2. Pretraining

High-level concepts for interviews and real-world LLM work

Table of contents

1

Overview

1.1 What you should know (even if you never pretrain from scratch)

Learning goals

What pretraining is (and isn’t)
3.1 The objective
3.2 “Capability” vs “behavior”

Data (the main lever)
4.1 Where data comes from (high-level)
4.2 Data governance (practical reality)

Data processing (what interviews ask about)
5.1 Filteringo
5.2 Deduplication and contamination

Data mixture and distribution
6.1 Why mixture matters
6.2 Practical mixture design (high-level)

Tokenization (the “hidden” engineering detail)

7.1 Key choices (high-level)
7.2 When you need tokenizer extension

Compute and scaling (back-of-the-envelope level)

8.1 What drivescost
8.2 The simplest interview estimation

Training recipe (conceptual, not cookbook)
9.1 Common knobs
9.2 Distributed training (names you should know)

10 Monitoring and debugging 8
10.1 What towatch 8
10.2 Common failure modes (what interviewers love) 8

11 Evaluation (high level) 9
11.1 Perplexity (PPL) 9
11.2 Benchmarks (what to say in interviews) 9

12 How pretraining choices show up later 9
12.1 Mid-training (CPT) 9
12.2 Post-training (SFT/RL) 9
12.3 Inference L 9

13 Interview drills 9

14 Appendix: Minimal pseudocode (conceptual) 10

1 Overview

Most ML engineers will not pretrain an LLM from scratch at work—but in-
terviews still test whether you understand the physics and failure modes of
pretraining, because they show up everywhere (mid-training, data pipelines,
serving, eval, safety).

1 Note

ELI5: Pretraining is teaching a model to predict the next word from lots
of text so it learns “how language works” and picks up general knowledge.

1.1 What you should know (even if you never pretrain
from scratch)

« How data quality and mixture impact downstream behavior (and safety).

e Why compute/memory constraints force tradeoffs (context length, batch
size, architecture).

o How to monitor training and debug regressions (loss spikes, contamination,
instability).

o How pretraining choices constrain mid-training, SFT, and RL.

flowchart LR

A[Data lake] --> B[Filtering & dedup]

B --> C[Tokenizer]

C --> D[Pretraining run]

D --> E[Checkpoints & evall

E --> F[Base model 0]

F --> G[Mid-training / CPT]
F --> H[SFT / DPO / RL]

2 Learning goals

By the end of this chapter, you should be able to:

o Explain what pretraining optimizes (and what it does not guarantee).

e Describe the end-to-end data pipeline at a high level (sources — cleaning
— mixture — tokens).

o Estimate the biggest drivers of cost (parameters, context, batch size,
precision, parallelism).

o Name the top failure modes (contamination, dedup errors, instability,
safety regressions) and how to detect them.

e Map pretraining decisions to later stages (CPT, alignment, tool use, rea-
soning, inference constraints).

@ Tip

ELI5: Pretraining builds the “engine.” Later stages teach the “driver” and
add “features.”

3 What pretraining is (and isn’t)

3.1 The objective

Standard LLM pretraining is next-token prediction over large corpora.

o It learns broad linguistic/statistical structure and absorbs patterns in the
data.
o It does not inherently learn truth—it learns what text usually looks like.

1 Note

ELI5: It’s like learning by reading a huge library: you get fluent, but you
can also pick up mistakes from bad books.

3.2 “Capability” vs “behavior”

« Capabilities (language fluency, general knowledge, pattern recognition)
mostly come from pretraining 4+ mid-training.

« Behavior (helpfulness, refusal style, tool schemas, safety policy) mostly
comes from post-training.

4 Data (the main lever)

If you only remember one thing: data dominates.

1 Note

ELI5: The model becomes what it eats—if the data is noisy, the model is
noisy.

4.1 Where data comes from (high-level)

e Web (broad coverage, high noise)

o Books / papers (higher quality, licensing constraints)

« Code repositories (tool use + reasoning patterns, but licensing and
leakage risk)

e Domain corpora (company docs, medical, legal, finance)

e Synthetic / curated mixes (lower noise, risk of bias and mode collapse)

4.2 Data governance (practical reality)

« licensing/terms-of-use, privacy and PII policies, internal security require-
ments
o audit trails: what was trained on, when, and how it was filtered

Warning

ELI5: You can’t “untrain” sensitive data easily—avoid ingesting it in the
first place.

5 Data processing (what interviews ask about)

5.1 Filtering

Typical filters (conceptual categories): - URL/domain filtering: remove spam
farms, low-quality domains, unsafe sources - content filtering: boilerplate, tem-
plates, link farms, gibberish - language filtering: keep target languages, remove
mixed/noise - safety filtering: PII, explicit content, disallowed categories

@ Tip

ELI5: Filtering is throwing away the trash so the model doesn’t learn
garbage.

5.2 Deduplication and contamination
Two classic interview topics:

e Dedup (train-train): removes repeats that cause memorization and
overfitting to boilerplate.

o Contamination (train-test): prevents “cheating” on benchmarks (model
saw test items during training).

Practical strategies: - exact match hashing + near-duplicate detection (shin-
gles/minhash/embeddings) - benchmark holdout dedup (remove overlap with
eval sets) - keep metadata for audit and reproducibility

1 Note

ELI5: Dedup is not reading the same page 1,000 times; contamination is
not reading the exam answers before the test.

6 Data mixture and distribution

Pretraining is rarely “one dataset.” It’s a mixture.

6.1 Why mixture matters

o more code — better coding/tool patterns, sometimes worse chat style

o more math/derivations — better symbolic reasoning, sometimes more
verbosity

o more domain text — better domain recall, risk of forgetting general skills
if overdone

i Note

ELI5: Mizing data is like planning a diet: too much of one food can cause
deficiencies elsewhere.

6.2 Practical mixture design (high-level)

A common pattern: - majority general text for broad capabilities - a meaningful
slice of high-quality data for grounding and style - targeted specialty data
(code/math/domain) based on product goals

Rule of thumb (for interviews): Start with a conservative domain fraction,
then increase only if you can show measurable gains without broad regressions.

7 Tokenization (the “hidden” engineering detail)

Tokenization affects: - compression ratio (tokens per character/word) -
throughput and cost (more tokens — more compute) - domain performance
(jargon splitting hurts) - multilingual tradeoffs (a tokenizer is never perfect
for every language)

1 Note

ELI5: A tokenizer is a way to chop text into LEGO bricks—the wrong
bricks make building slow and messy.

7.1 Key choices (high-level)

¢ BPE/Unigram variants (implementation detail; interviews rarely need deep
internals)

 vocabulary size (tradeoff: fewer tokens vs larger embedding tables)

« normalization rules (case, punctuation, unicode)

¢ handling numbers, whitespace, code symbols

7.2 When you need tokenizer extension

If important domain terms fragment into many sub-tokens, extension can help—
but it creates training/compatibility complexity.

@ Tip

ELI5: Tokenizer extension is adding new “words” to the model’s dictionary
so it stops spelling jargon out letter by letter.

8 Compute and scaling (back-of-the-envelope
level)

This chapter stays high-level; you only need enough to reason about tradeoffs.

8.1 What drives cost

o model size (parameters)

e context length

o tokens trained (dataset size x epochs)

« precision (bf16/fp16/fp8/int8)

« parallelism and efficiency (pipeline/tensor/data parallel, kernel quality)

1 Note

ELI5: Training cost is mostly “how many numbers you multiply” times
“how many tokens you see.”

8.2 The simplest interview estimation

When asked “what makes training 10x more expensive?”: - doubling parameters
roughly doubles FLOPs per token - doubling context can increase attention cost
and memory - increasing tokens trained increases compute linearly

9 Training recipe (conceptual, not cookbook)

You don’t need the full optimizer math for most roles, but you should recognize
the knobs.

9.1 Common knobs

e learning rate schedule (warmup + decay)
 batch size / gradient accumulation

« regularization (weight decay, dropout)

« checkpointing strategy (frequency, best-of evals)
o precision (bf16/fp16) and stability tradeoffs

@ Tip

ELI5: The learning rate is how big each “correction step” is—too big and
you wobble, too small and you crawl.

9.2 Distributed training (names you should know)
o Data parallel (DP): split batches across GPUs
e Tensor parallel (TP): split layers’ matrix multiplies across GPUs
« Pipeline parallel (PP): split layers into stages across GPUs
i Note

ELI5: Distributed training is like having multiple cooks: DP splits orders,
TP splits chopping, PP splits the recipe into stations.

10

Monitoring and debugging

10.1 What to watch

loss curves (overall + per-domain channels)

loss spikes (do they recover?)

perplexity on a fixed eval set (track trend, not single numbers)
throughput (tokens/sec), GPU utilization, memory, kernel efficiency
quality gates (small benchmark suite)

Practical: keep a fixed “probe set” (e.g., 200 prompts/docs) and track PPL and
a few qualitative generations.

@ Tip

ELI5: Monitoring is checking the dashboard while driving so you don’t
discover an engine failure after you crash.

10.2 Common failure modes (what interviewers love)

instability: exploding loss, NaNs, divergence
overfitting/memorization: too many repeats, insufficient dedup
contamination: suspiciously high benchmark scores with poor general-
ization

distribution shift: model gets better in one area and worse elsewhere
safety regressions: new unsafe patterns appear due to data changes

11 Evaluation (high level)
11.1 Perplexity (PPL)

PPL is a useful sanity check, but: - compare meaningfully only within the same
tokenizer + eval setup - lower PPL doesn’t always mean better downstream
instruction following

1 Note

ELI5: Perplezity is how “surprised” the model is by the next word—Iless
surprised often means it learned the patterns better.

11.2 Benchmarks (what to say in interviews)

e use a small, relevant benchmark suite as regression gates
¢ include domain evals if you trained on domain data
¢ include safety and leakage checks as part of standard CI for models

12 How pretraining choices show up later

12.1 Mid-training (CPT)

e CPT is “more pretraining,” but on a narrower distribution.
o If your base pretraining data is weak in a domain, CPT must do more
work (and risk more regressions).

12.2 Post-training (SFT/RL)

o if pretraining data includes good tool-use patterns, SFT/RL is easier
o if the base is heavily contaminated or biased, alignment must fight upstream

12.3 Inference

o tokenizer and context-length choices influence KV cache size and serving
cost
« architecture choices (e.g., GQA/MQA) affect memory pressure at decode

13 Interview drills

1. Data: How would you build a data pipeline that avoids benchmark
contamination?

2. Mixture: You added more code data and coding improved, but chat
quality dropped—why?

3. Tokenization: Your domain terms split into many pieces; what do you
do and what can go wrong?

4. Monitoring: Loss spiked 3x mid-run then recovered—how do you triage?

5. System link: Why can a longer context window make inference much
more expensive?

14 Appendix: Minimal pseudocode (conceptual)

Conceptual sketch: pretraining data pipeline
raw = crawl_web() + load_books() + load_code()
filtered = filter_urls(raw)

filtered = filter_content(filtered)

deduped = deduplicate(filtered)

tokens = tokenize(deduped, tokenizer)

Conceptual sketch: training loop
for batch in batcher (tokens) :
loss = next_token_loss(model(batch), batch.targets)
loss.backward()
optimizer.step()
optimizer.zero_grad()

1 Note

ELI5: The code is simple on paper—the hard part is data quality, scaling,
and not breaking things.

10

	Overview
	What you should know (even if you never pretrain from scratch)

	Learning goals
	What pretraining is (and isn't)
	The objective
	``Capability'' vs ``behavior''

	Data (the main lever)
	Where data comes from (high-level)
	Data governance (practical reality)

	Data processing (what interviews ask about)
	Filtering
	Deduplication and contamination

	Data mixture and distribution
	Why mixture matters
	Practical mixture design (high-level)

	Tokenization (the ``hidden'' engineering detail)
	Key choices (high-level)
	When you need tokenizer extension

	Compute and scaling (back-of-the-envelope level)
	What drives cost
	The simplest interview estimation

	Training recipe (conceptual, not cookbook)
	Common knobs
	Distributed training (names you should know)

	Monitoring and debugging
	What to watch
	Common failure modes (what interviewers love)

	Evaluation (high level)
	Perplexity (PPL)
	Benchmarks (what to say in interviews)

	How pretraining choices show up later
	Mid-training (CPT)
	Post-training (SFT/RL)
	Inference

	Interview drills
	Appendix: Minimal pseudocode (conceptual)

