3. Mid-Training & Post-Training

From CPT to Agentic RL: Foundations, recipes, and failure modes
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0.1 Learning goals

Beyond memorizing definitions, interviews test whether you can choose the
right stage (CPT vs SFT vs RL vs distill) and anticipate failure modes.

@ Tip

ELI5: Training an LLM is like training a new hire: first you teach broad
skills, then company-specific knowledge, then “how we talk to customers,”
and finally you coach them with feedback on real tasks.

By the end of this chapter, you should be able to:

Explain why mid-training (CPT) exists and how it differs from pretraining
and SFT.

Implement critical data strategies: General Replay for memory, packing
for throughput, and chat templates + masking for instruction tuning.
Apply PEFT (LoRA/QLoRA) strategies, including multi-tenant serving
patterns.

Compare alignment techniques: PPO/RLHF vs. DPO/ORPO
vs. Agentic RL (e.g., GRPO and related variants).

Design pipelines that optimize for Reasoning (System 2) using verifiers
and process rewards.

Build reliable tool use systems (schema correctness + tool selection +
chaining).

Apply test-time scaling (sampling, revision, verifier reranking) to boost
reliability.

Debug common regressions like the stability gap, reward hacking, and
template mismatch.



0.2 The big picture: The life cycle of an LLM

This chapter organizes the landscape into a decision flow: What’s missing:
knowledge, behavior, preferences, reasoning reliability, or cost? Each corresponds
to a different lever.

0.2.1 Interview framing: “Which knob would you turn?”
When you're given a product requirement, answer in this order:

1. Define the target behavior (format, safety, tool use, reasoning, latency).

2. Diagnose the gap (knowledge gap vs behavior gap vs optimization gap).

3. Pick the cheapest effective lever (prompt — SFT — DPO — RL —
CPT — distill).

4. Name the regression risks (forgetting, reward hacking, template mis-
match, latency).

1 Note

ELI5: If the model doesn’t know the facts, teach it with reading (CPT). If
it knows facts but talks wrong, teach it with examples (SFT). If it needs
to prefer “better” answers, use preferences/RL. If it’s too slow/expensive,
compress it.

We treat training and inference as a pipeline of altering distributions and compute
budgets.

flowchart LR
A[Base Model 0] --> B{Domain gap?}

B -->|Yes: Knowledge/Vocab/Context| C[Mid-training / CPT]
B -—>|No: Just behavior| D[SFT]

C --> E[ _mid]
E-—>D
D -—> F[ _sft]

F --> G{Alignment path}
G -->|Chat/Style| H[DPO / ORPO / PPO]
G -->|Reasoning/Math/Code| I[Agentic RL: GRPO / Self-training loops]

H --> J[ _aligned]
I ==>J

J --> K{Inference budget?}



K -—>|Low| L[Direct decode]
K -->|High| M[Test-time scaling]

J -—> N[Distillation / Quantization]
N --> 0[ _deploy]

i Note

Core mental model

o Pretraining: builds the engine (general capabilities).

o Mid-training (CPT): tunes the engine for terrain (domain knowl-
edge, context-length priors, sometimes RL-compatibility).

o Post-training (SFT/DPO/RL): teaches the driver (behavior,
safety, preference alignment).

o Test-time scaling: spends compute at inference to navigate complex
routes (better reliability without retraining).

0.3 Data topology: the hidden interview topic

Most real failures come from feeding the right data through the wrong loss
topology.

0.3.1 The three “topologies” you should be able to explain

o Packing (CPT): maximize tokens/GPU by concatenating documents to
fill the context window.

e Masking (SFT): compute loss only where you want supervision (typically
assistant tokens).

« Rollouts (RL): the policy generates full sequences; you score outcomes
and optimize expected reward.

0.3.2 Quick mental check

Ask: “Which tokens contribute gradients?”

- CPT: all tokens (next-token loss)

- SFT: assistant tokens only (masked)

- DPO: chosen vs rejected (contrast)

- RL: tokens sampled by the policy (on-policy)



@ Tip

ELI5: Same text, different learning: CPT learns to continue text, SF'T
learns to answer like a tutor, RL learns by trying things and getting a
score.

A common interview failure is not distinguishing how data is constructed and
how loss is applied.

@ Tip

Packing vs masking vs rollouts
o Packing: concatenating docs to fill context (often used in pretrain-
ing/CPT; sometimes also used in SFT for throughput).
¢ Masking: loss only on assistant tokens (typical in SFT on chat
transcripts).
o Rollouts: generating full sequences until EOS (RL/agentic RL).
Enables exploration and verifier-based selection.

flowchart LR
A[Raw text / docs] --> B[CPT: next-token loss (often packed)]
C[Instruction chats] --> D[SFT: masked loss on assistant tokens]
E[Preference pairs] --> F[DPO/ORP0O: contrast chosen vs rejected]
G[Prompts + Verifier/Env] --> H[Agentic RL: rollouts + scoring + optimize]

1 Phase 1: Mid-training / Continued Pretraining
(CPT)
CPT is the workhorse for domain specialization and long-context priors.

It’s also the most common place to introduce regressions if you don’t guardrail
general capabilities.

@ Tip

ELI5: CPT is “more reading”: you keep training the model on domain
documents so it picks up jargon and facts naturally.

1.0.1 When CPT is the right tool

Use CPT when you see: - high perplexity on in-domain corpora, - system-
atic entity/jargon failures, - domain-specific formatting/structures (legal docs,
codebases), - long-document understanding gaps.



1.0.2 CPT design checklist (interview-ready)

o Data: quality > quantity; de-dup, remove boilerplate, enforce doc bound-
aries.

e Mixture: start with replay (e.g., 80/20) and tune by regression gates.

o LR: typically much lower than initial pretraining peak LR.

o Eval: track both domain gains and general regressions continuously.

1.1 What it is (and isn’t)
1.1.1 What CPT optimizes

CPT uses the same next-token objective as base pretraining, but on a
different distribution.

o It tends to improve knowledge recall and domain fluency.
e It can also improve tool-use and reasoning indirectly when your domain
data contains those patterns (e.g., code repos, math solutions).

1.1.2 What CPT is not

¢ Not instruction-following by itself: you can CPT a model into a great
encyclopedia that still refuses to answer in JSON.

e Not a replacement for alignment: CPT can even make safety worse if your
corpus contains unsafe patterns.

1 Note

ELI5: CPT teaches what to say; SFT teaches how to say it to a user.

Continued next-token training on a target distribution. It is necessary when
the base model lacks:

o domain knowledge (facts/jargon/entity priors),

« long-context priors (document structure, long-range retrieval),

« and sometimes RL-compatibility for reasoning-style RL (model-family
differences).

It is not SFT: SFT is about behavioral formatting and instruction following.

1.2 Optional: Tokenizer extension

Tokenizer extension can be worth it when your domain has many high-frequency
terms that get split into many sub-tokens (e.g., rare drug names, APT identifiers,
legal citations).



@ Tip

ELI5: Tokenizer extension is like adding new dictionary words so the
model stops spelling domain terms letter-by-letter.

1.2.1 When to extend

¢ Decision rule: measure fragmentation rate on a domain vocabulary
list. If important terms routinely become 5+ tokens, you're wasting context
and compute.

o Signal: you see frequent truncation/length issues, or the model mangles
domain terms (broken identifiers, misspellings, bad citations).

1.2.2 How to extend (minimal-risk workflow)

1. Compile a vocabulary shortlist (top entities, terms, APIs).

2. Add tokens for the worst offenders.

3. Resize embeddings; initialize new token rows (random, or average of
constituent sub-token embeddings).

4. Warm up: oversample examples containing the new tokens for the first
phase of CPT.

1.2.3 Failure modes to mention

¢ Undertrained tokens: new tokens behave like noise early — mitigated
via oversampling and warm-up.

¢ Segmentation mismatch: any downstream pipeline that tokenizes text
must use the updated tokenizer.

¢ Distribution shock: adding tokens changes token counts and packing;
re-check sequence length assumptions.

1.3 The stability gap
1.3.1 Why it happens

Early in CPT, gradients strongly adapt the model to the new distribution, often
pushing it away from general-purpose representations.

Common contributors: - too-high learning rate, - low diversity domain data
(narrow corpora), - insufficient general replay, - noisy/mislabeled documents
(scrapes, templated boilerplate).

1.3.2 Debugging playbook

If general benchmarks drop sharply: - decrease LR and/or increase warm-
up, - increase replay ratio, - improve data quality (dedup, filter spam), - add
regularization to the reference (e.g., KL to base logits if available).



i Note

ELI5: Stability gap is like cramming for one exam and temporarily
forgetting other subjects—replay is doing a little “general homework” to
prevent that.

CPT often causes an early dip in general performance before recovering.

o Mitigation: General replay (e.g., 80% domain / 20% replay as a starting
point), plus regression gates.

# Pseudocode: CPT loop with packing + replay

### Practical add-ons (what interviews like)

- **Curriculum:** start with higher replay, then anneal toward more domain.

- **Domain mixing:** if multiple sub-domains, use adaptive sampling (upweight domains with !
- **Guardrails:** run a small regression suite every N steps; stop/rollback on big drops.

for step in range(T):
batch = sample(D_domain) if rand() < p_domain else sample(D_replay)

# Packing: concatenate docs to fill context (no padding; delimit with EQ0S)
x = pack_sequences(batch, seq_len=L)

# Next-token objective

loss = cross_entropy(model(x[:, :-11), x[:, 1:1)
loss.backward()

optimizer.step()

optimizer.zero_grad()

if step % eval_every == 0 and regression_failed():
tune (p_domain="down", lr="down", data_quality="up")

1 Note

Mid-training to enable RL scaling (optional add-on)
Two useful framing papers for the “CPT — RL compatibility” story are:
o OctoThinker: Mid-training Incentivizes Reinforcement Learning
Scaling (arXiv:2506.20512) [Qoctothinker 2025]

e On the Interplay of Pre-Training, Mid-Training, and RL on Reasoning
Language Models (arXiv:2512.07783) [Qinterplay_pre_mid_rl_2025]




2 Phase 2: Supervised Fine-Tuning (SFT)

SET turns a pretrained model into a usable assistant: it learns roles, format,
and tool schemas.

@ Tip

ELI5: SFT is “learning by example”: you show the model lots of good
conversations and it imitates them.

2.1 The objective: formatting & behavior
2.1.1 What SFT changes most

SFT is extremely effective for: - instruction following (do X, don’t do Y), - output
formats (JSON, XML, markdown), - tool calling patterns (function arguments,
schemas), - safety refusals and policy style.

2.1.2 What SFT changes least
SFT is weak for injecting broad factual knowledge (unless you have huge volumes,
which starts to look like CPT).

2.1.3 Common failure modes

o Over-refusal / under-refusal from imbalanced safety data.

o Length bias: model learns to be overly verbose/terse depending on label
distribution.

e Template mismatch: breaks role separation or tool call formatting.

1 Note

ELI5: SFT is teaching “customer support etiquette,” not teaching new
encyclopedic facts.

SFT teaches interaction style, tool schemas, and safety behavior. It is not the
most efficient lever for injecting broad new knowledge.

2.2 The chat template trap
2.2.1 Why templates matter

Most modern checkpoints are trained with special control tokens (role separators,
message boundaries). If your SFT data uses a different template, you create a
train/test mismatch.

10



Practical guidance - Adopt the base model’s official chat template (or a
validated equivalent). - Be consistent across SFT, DPO, and RL rollouts. - For
tool-use, include explicit tool result messages in the same template.

@ Tip

ELI5: Chat templates are the “punctuation and grammar” the model
expects—change them and the model gets confused.

Models see control tokens, not literal "User:" / "Assistant:" strings.

o Example (illustrative): <|im_start|>user\n{content}<|im_end|>\n
« Risk: mismatched templates lead to broken behavior (poor role separation,
weird completions, tool-call failures).

2.3 Implementation: user masking
2.3.1 Why we mask

If you compute loss on user tokens, the model learns to predict the prompt instead
of focusing capacity on answering.

Practical variants - Assistant-only masking: most common for chat. -
Selective masking: also supervise tool-call structure but not chain-of-thought
(if you separate hidden reasoning). - Span masking: supervise only the JSON
block for tool calling.

1 Note

ELI5: Masking is grading only the student’s answer, not grading the
question they were asked.

We mask user tokens to prevent the model from learning to predict the prompt.

# Pseudocode: SFT with masking (PyTorch-style)

### Interview extension: data collator

In practice you build a collator that:

- concatenates multi-turn messages with separators,

- generates “labels” that are ~-100" on user/tool-result tokens,

- optionally enforces max length with truncation that preserves the assistant answer.

def compute_sft_loss(model, input_ids, labels):
# labels: user tokens set to -100 (ignored by CrossEntropyLoss)
logits = model(input_ids) .logits
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()

11



return F.cross_entropy(shift_logits.view(-1, V), shift_labels.view(-1))

@ Tip

Interview one-liner
“In SFT, we mask the user prompt because we want the model to answer
questions, not learn to ask them.”

3 Phase 3: Parameter-Efficient Fine-Tuning
(PEFT)

PEFT methods adapt a model without updating all weights, enabling faster
iteration and multi-tenant serving.

@ Tip

ELI5: PEFT is like adding a small “personality chip” on top of a big
brain instead of retraining the whole brain.

3.1 LoRA, QLoRA, and multi-tenancy
3.1.1 What LoRA does
[TODO]

3.1.2 Design knobs

o« Target modules: attention projections, MLP projections, or both.
o Rank (r): higher rank — more capacity but more memory/latency.
e Merge vs on-the-fly: merge adapters for deployment or apply dynami-
cally per request.
3.1.3 QLoRA
QLoRA keeps the base in 4-bit and trains adapters in higher precision, making
large models feasible on limited GPUs.
3.1.4 Multi-tenancy patterns

¢ Serve one base 4+ many adapters, route requests by tenant.
e Batch by adapter_id to avoid mixing overhead.

12



1 Note

ELI5: LoRA learns small “adjustments” that steer the model without
moving all its weights.

e LoRA: low-rank adapters: (W =W + A xB).

¢« QLoRA: LoRA on a quantized (e.g., 4-bit) frozen base model to fit larger
models on smaller GPUs.

o Multi-tenant serving: serve 1 base + N adapters per customer/prod-
uct (e.g., LoRAX-style patterns). This is a common SaaS system design
topic.

Warning

Common failure mode: adapter interference

Adapters can regress on shared prompts or bleed style across tenants if
routing/versioning/constraints are not handled carefully (especially in
batching).

4 Phase 4: Alignment (Chat & Style)

4.1 Reinforcement learning (RL) for LLMs (and how it
relates to DPO)

Interviews often expect you to explicitly separate: - Preference optimization
(DPO/ORPO): offline learning from labeled comparisons. - RL (REIN-
FORCE/PPO/GRPO-family): online / on-policy learning from model
rollouts scored by a reward model or verifier.

1 Note

ELI5: DPO learns from “which answer is better?” examples; RL learns
by “trying answers and getting a score.”

4.1.1 Unified objective (the one formula that explains most variants)

We have a policy ( ) (the LLM), a reward (r(z, y)) (from a reward model,
verifier, unit tests, etc.), and often a reference policy ( {ref}) to prevent drift.
[TODO]

13



@ Tip

ELI5: The KL term is a “leash” that stops the model from learning weird
tricks to game the reward.

flowchart LR
X[Prompt x] --> P[Policy
P --> R[Reward model / verifier r(x,y)]

generates y]

R -—> A[Compute advantage signal]
A --> U[Update policy

g => P

(keep close to ref)]

4.1.2 RL algorithm zoo (what you should be able to define in one
minute)

Below are the common post-training RL variants and how they differ in practice.

Typical ELI5 (one
Method Core idea inputs Key tradeoff  sentence)
REIN- Vanilla policy prompts — simplest but “Try answers,
FORCE gradient sampled high-variance; see the score,
using completions needs many and nudge the
sampled — scalar samples model toward
returns; often rewards higher-
with a scoring
baseline to words.”
reduce
variance
PPO Clipped on-policy more stable “Make small
policy rollouts + updates; safe updates
gradient + reward heavier infra  so noisy
(often) value  model/veri- (advan- rewards don’t
baseline; plus  fier tages/GAE, jerk the
KL to a sometimes model
reference critic) around.”
GRPO PPO-like but K samples cheaper/more  “Generate
uses group- per prompt + scalable; many
relative scorer relies on good  attempts and
baselines within-group  learn from

from multiple
samples per
prompt;
avoids an
explicit critic

14
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how each one
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Typical ELI5 (one
Method Core idea inputs Key tradeoff — sentence)
DR.GRPO Fixes GRPO same as improved “Same as
(“GRPO biases caused GRPO stability /efi-  GRPO, but it
Done by length/std ciency; still stops
Right”) normaliza- needs accidentally
tions; focuses grouping + over/under-
on unbiased verifier weighting
token certain
efficiency questions or
lengths.”
GSPO Uses K samples more stable, “Treat the
(Group sequence- per prompt + especially for  whole answer
Sequence level scorer long outputs  as one unit
Policy Op- importance and MokE; when deciding
timization)  ratios and infra can be how much to
sequence- simpler update.”
level clipping
instead of
token-level
ratios
DAPO “Decoupled rollouts + better stabil-  “Clip updates
clip” + reward model ity/diversity  more
“dynamic + sampling and training  intelligently
sampling” to  buffer efficiency; and keep
stabilize and more moving  sampling the
improve parts useful
efficiency at examples.”
scale
DPO Offline preference simple/stable;  “From two
objective that pairs (cho- no answers,
pushes the sen/rejected)  exploration learn to
model toward + reference beyond the prefer the one
preferred dataset humans
completions picked—no
without trial-and-
rollouts error rollouts
needed.”
@ Tip

Interview tip: For any method above, be ready to answer: (1) what data
it needs, (2) where the stability comes from, (3) where it breaks, (4) how

15



you would debug it.

4.1.3 REINFORCE (the foundation)

REINFORCE is the “starting point” for many LLM RL methods: update the
model to increase the log-probability of sampled tokens proportional to a reward
signal.

e Strength: conceptually clean; minimal machinery.
¢ Weakness: high-variance gradients — slow unless you use lots of samples
and good baselines.

1 Note

ELI5: REINFORCE is like playing darts blindfolded: you can learn, but
you need lots of throws unless you add good feedback/baselines.

4.1.4 PPO (RLHF classic)

PPO adds stabilizers on top of REINFORCE: - clipping limits how much
the policy can change per step, - advantages (often GAE) reduce variance, -
KL-to-reference discourages reward hacking and mode collapse.

@ Tip

ELI5: PPO is “step carefully toward better answers,” not “jump to
whatever got a high score once.”

4.1.5 GRPO (group-relative policy optimization)

GRPO-family methods typically: 1. sample (K) completions for a prompt, 2.
score each completion, 3. compute a relative baseline within the group, 4.
update the policy using those relative advantages (often with a KL anchor).

flowchart TB
X[Prompt x] --> G[Sample K completions]
G --> S[Score each completion]
S --> B[Group baseline]
B -—> A[Relative advantages]
A --> U[Update policy]

16



i Note

ELI5: GRPO is like grading on a curve: you learn from how each attempt
ranks among your own attempts.

4.1.6 DR.GRPO (bias fixes)

In practice, GRPO can inadvertently overweight certain prompts or lengths
depending on how you normalize by token count and how you scale advantages
by within-group variance. “DR.GRPO” is a commonly cited set of fixes that
reduce those biases.

@ Tip

ELI5: DR.GRPO is GRPO with the “math accounting” fized so you don’t
accidentally learn from the wrong thing.

4.1.7 GSPO (sequence-level policy optimization)

GSPO shifts key operations from the token level to the sequence level: - the
importance ratio is based on sequence likelihood, - clipping and optimization
are done per sequence.

This can improve stability (especially for long-form completions and MoE RL
training).

@ Tip

ELI5: GSPO updates based on whether the entire answer is more likely,
instead of focusing on token-by-token ratios.

4.1.8 DAPO (decoupled clip + dynamic sampling)

DAPO is a GRPO-family approach that emphasizes two levers: - decoupled
clipping (often asymmetric clip bounds to preserve diversity / avoid collapse),
- dynamic sampling (filtering/sampling strategies to prioritize informative
rollouts).

i Note

ELI5: DAPO is “don’t over-clip the good stuff, and keep training on the
most useful attempts.”

17



4.1.9 DPO in the same frame (why it belongs here)

DPO is often taught alongside RL because it solves the same alignment problem
under different constraints: - no rollouts, - no reward model training loop, - but
also no exploration.

1 Note

ELI5: DPO is RL without the “trying” step—just learn directly from which
answer is preferred.

4.1.10 Interview Q&A (rapid)

Q: When would you pick DPO over PPO/GRPO?
A: when you have strong preference pairs, want stable/simple training, and
don’t need exploration.

Q: When would you pick GRPO/GSPO/DAPO over DPO?
A: when correctness is verifiable and sampling multiple candidates can discover
new high-quality trajectories beyond your dataset.

Q: What’s the #1 RL failure mode?
A: reward hacking or a mis-specified verifier — mitigate with KL anchors, stricter
rewards, and targeted evals.

4.2 Path A: DPO / ORPO (offline)
4.2.1 What DPO is optimizing

DPO trains a policy to prefer (y_w) over (y_1) without an explicit reward model,
using a contrastive objective relative to a reference policy.

When DPO shines - you have good preference data coverage, - you want
stability and simpler infra, - you don’t need exploration beyond the dataset.

When DPO struggles - sparse tasks (math/code correctness) where “prefer-
ence” “correct” - domains where the dataset is biased or low-diversity

i Note

ELI5: DPO is “pick the better of two answers and nudge the model toward
it,” without training a separate scorer.

Optimizes policy directly on preference pairs ((y_w, y_1)).

e Pros: stable, memory efficient, easy to scale.
e Cons: no exploration; limited by dataset quality and coverage.
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4.3 Path B: PPO / RLHF (online)
4.3.1 What PPO adds

PPO uses on-policy rollouts + a reward signal (often a reward model) to push
the policy toward higher reward while limiting drift via KL.

Practical components - Reward model (RM): scores outputs. - Reference
policy: defines the KL anchor. - Value function / critic: reduces variance
(not used in GRPO-style).

Failure modes - reward hacking, - mode collapse, - excessive KL drift or
over-regularization.

Warning

ELI5: PPO is “try an answer, get a score, and adjust,” but with guardrails
so the model doesn’t become weird.

Classic RM + PPO loop.

e Pros: can explore new solutions when the “right behavior” isn’t in the
dataset.

e Cons: complexity and instability; requires reward model training and KL
control.

5 Phase 5: Tool use & RAG

Tool use is one of the most interview-relevant applications of post-training
because it connects modeling to system design.

@ Tip

ELI5: Tool use is teaching the model to stop guessing and instead call a
calculator / database / API when needed.

5.0.1 Core subproblems (name these in interviews)

1. Tool selection: which tool to call (or none)?

2. Argument construction: produce valid, schema-conformant inputs.

3. Execution handling: read tool outputs, recover from errors, and continue.
4. Final response: integrate evidence and cite sources.

5.0.2 Common engineering levers

 constrained decoding for JSON/schema,
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o retries with repairs (self-heal loops),
¢ tool-use evaluation: success rate, schema validity, groundedness.

5.1 Tool use as a data problem
5.1.1 Trajectory format
A robust training example includes the full loop:

« (optional) plan / intent

e tool call (name + args)

o tool result (observation)

« final answer (grounded in observation)

5.1.2 Constrained decoding

For high-stakes tools, enforce validity at generation time (grammar / JSON
schema), not just via training data.

1 Note

ELI5: Constrained decoding is like putting the answer in a form with
required fields so the model can’t scribble nonsense.

Tool use is typically learned via SF'T on tool trajectories:
Thought — Call — Result — Answer
Common failure modes and fixes:

« Hallucinated tools/arguments: model produces invalid JSON or wrong
schema
— Fix: constrained decoding; schema validators; training on negative
examples (when not to call tools)
e Tool overuse: calls tools unnecessarily
— Fix: counterexamples + explicit decision data (call vs don’t call)
e Chaining failures: can call once, can’t plan multi-step
— Fix: multi-turn/trajectory data + agentic eval suites

1 Note

RAG is tool use
RAG is simply tool use where the tool is a vector DB (retrieve docs),
followed by grounded synthesis.
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6 Phase 6: Reasoning & agentic RL (System 2)

Reasoning RL focuses on task completion and correctness, often with
verifiers, unit tests, or deterministic checkers.

@ Tip

ELI5: Reasoning RL is like giving the model practice problems and only
rewarding it when the final answer checks out.

This phase optimizes for correctness and task completion (math/code/tool
agents), not just preference.

6.1 Reasoning as an evaluation target
6.1.1 What “reasoning” usually means in practice
In interviews, define reasoning operationally as a bundle of measurable behaviors:

o decomposition (subgoals),

« verification (checks),

« self-correction (revise when wrong),
« planning (sequence tool calls).

6.1.2 How to evaluate

e correctness rate on verifiable tasks,

e robustness under perturbations,

o calibration (knowing when unsure),

¢ tool-use success when reasoning requires tools.

i Note

ELI5: Reasoning is “show your work and catch your own mistakes,” not
just giving an answer fast.

Cover reasoning as a bundle of behaviors:

e Decomposition: break task into sub-goals

e Verification: check intermediate steps or outcomes
e Self-correction: revise when a verifier flags an error
¢ Planning: decide tool calls and their order
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6.2 Outcome vs process supervision
6.2.1 Tradeoffs you should be able to articulate

¢ Outcome rewards (ORM): cheap and robust, but sparse — can be slow
to learn.

o Process rewards (PRM): dense learning signal, but expensive and can
overfit to “style of reasoning.”

6.2.2 Hybrid patterns

e outcome reward + best-of-N sampling + SFT on successful traces,
e« PRM only for difficult subsets,
o verifier ensembles to reduce brittleness.

@ Tip

ELI5: Outcome reward grades the final exam; process reward grades each
step of the homework.

¢ Outcome (ORM): did the test pass? did the answer match the key?
(sparse signal; cheap; robust)

o Process (PRM): did step 1 make sense? (dense; expensive; can reduce
reward hacking)

6.3 Self-training loops (STaR/ReST-style)

Self-training is the simplest “agentic RL” pattern when you have a verifier:
generate multiple candidates, keep the ones that pass checks, and train on them.

i Note

ELI5: STaR/ReST is like letting the model try many times, keeping the
correct attempts, and studying those.

6.3.1 Why self-training works

If correctness is verifiable (unit tests, exact match, deterministic checks), then
sampling gives you a pool of attempts where some are correct even if the average
attempt is not. Training on the verified subset increases the probability mass on
successful trajectories.

6.3.2 A practical pipeline

1. Generate (K) candidates per prompt (often with higher temperature for
diversity).
2. Verify each candidate (tests/checkers/verifier model).
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3. Filter to positives (and optionally hard negatives).
4. Train the policy:
o SFT on positives (behavior cloning), and/or
e DPO with positives as “chosen” and negatives as “rejected”.

6.3.3 Key knobs (interview-friendly)

o K (samples per prompt): higher (K) increases chance of at least one
correct, but costs more compute.

e Verifier precision: false positives poison training; prefer strict checks
early.

« Diversity controls: temperature/top-p and prompt variations prevent
overfitting.

e Curriculum: start with easier problems; gradually introduce harder ones.

6.3.4 Failure modes

o Self-confirmation loops: verifier is weak — model learns wrong patterns
that still “look good.”

e Mode collapse: too much filtering — dataset becomes narrow; keep
diversity.

o Distribution drift: model changes — regenerate trajectories periodically
(“on-policy” refresh).

7 Pseudocode: self-training loop (STaR/ReST-
like)

solutions = model.generate(problems, num_ return_sequences=N) rewards =

verify _solutions(solutions) # tests / oracle / checker gold = [s for s, r in

zip(solutions, rewards) if r == 1.0] loss = sft_loss(model, gold) # or DPO with
gold vs failed loss.backward() optimizer.step() optimizer.zero_ grad()

## GRPO (Group Relative Policy Optimization)

### The core idea
GRPO removes the critic/value model by normalizing rewards **within a group** of samples fo:

Sample \(K\) outputs per prompt.

Score them with a verifier/reward model.

- Compute advantages via within-group normalization (e.g., \(r_i - ext{mean}(r)\)).
Update the policy using those normalized advantages.

### When it’s attractive
- large models where a critic is expensive,
- verifiable tasks where you can sample multiple candidates,
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- memory-constrained RL setups.

callout-tip
**ELT5:**x *GRPO is "compare answers to each other for the same question" instead of learning

GRPO (popularly cited via DeepSeekMath) uses a group-relative baseline and avoids a learned

- **xKey idea:** sample a *group* of outputs for the same prompt and normalize rewards withi:
- **Benefit:** large memory savings - enables RL at larger model sizes.

" "mermaid
flowchart TB
subgraph Sampling
P[Prompt x] --> G[Generate group {yl..yK}]
end

subgraph Scoring
G --> V[Verifier / Reward modell]
V --> S[Scores {rl..rK}]

end

subgraph Optimization
S --> M[Baseline: mean(r)]
S --> A[Advantage: r_i - mean(r)]
A --> U[Update policy ]

end

Sampling --> Scoring --> Optimization

7.0.1 GRPO and newer variants (recommended coverage)
Suggested topics to cover (interview-friendly, not exhaustive):

o Group size (K): bigger (K) — better ranking signal but more sampling
cost.

¢ Baselines: mean vs median vs rank-based advantages.

« Clipping/regularization: PPO-style clipping and KL-to-reference to
avoid drift.

¢ Reward shaping: mixing sparse outcome checks with heuristic partial
credit.

« RLOO / group baselines: leave-one-out baselines to reduce bias.
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i Note

ELI5: Newer GRPO variants mostly change “how we compute the baseline”
and “how we prevent the model from drifting too far.”

Add a short “variants” subsection so candidates can speak to recency:

o Off-policy / replay-friendly GRPO: extending group-relative methods
to off-policy updates (clipped objectives to stabilize drift).

e Multi-objective GRPO: handling multiple rewards (correctness + safety
+ style) with normalization/weighting to reduce reward hacking.

o« Agentic GRPO: grouping by states or tool-step segments to improve
credit assignment over long horizons.

# Pseudocode sketch: GRPO-style within-group normalization

outs = sample_k(policy, prompt=x, K=K)

scores = verifier(outs) # or reward model

baseline = scores.mean()

advantages = scores - baseline

policy_update(policy, outs, advantages) # PPO-like surrogate without critic

Warning

Reward hacking RL will exploit reward model/verifier blind spots.
Defense-in-depth: - stronger verifiers, - held-out adversarial eval, - con-
straints (format/safety rules), - process supervision (when feasible).

8 Phase 7: Test-time scaling

Test-time scaling spends compute during inference to increase reliability,
without retraining the model.

@ Tip

ELI5: Test-time scaling is like thinking twice: gemerate several attempts,
check them, and pick the best.

8.0.1 Common patterns to mention

e best-of-N + verifier,
¢ self-consistency voting,

e critique — revise loops,
o search (Tree-of-Thought, MCTS) with pruning.
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Spending compute at inference to improve reliability.

1. Best-of-IN: sample N candidates, score with a verifier, take the best.

2. Sequential revision: draft — critique — fix.

3. Search: Tree-of-Thought / MCTS-style exploration (most useful for agents
and tool chains).

# Pseudocode: test-time scaling (best-of-N)
cands = model.generate(prompt, n=16, temp=0.7)
scores = verifier.score(prompt, cands)
best_response = cands[argmax(scores)]

@ Tip

Interview framing
Test-time scaling is an “inference lever” when retraining is expensive or
slow. The tradeoff is latency/cost.

9 Phase 8: Distillation

Distillation compresses behaviors from a strong teacher into a cheaper student,
often preserving much of the capability at lower cost.

@ Tip

ELI5: Distillation is teaching a smaller model by letting it copy a smarter
model’s homework.

9.1 Black-box vs white-box
9.1.1 Black-box (most common in practice)

« call a teacher API to generate high-quality traces (solutions, tool trajecto-
ries, reasoning).
o train the student on those traces (SFT) or preference pairs (DPO).

9.1.2 White-box (when you have weights)

« match teacher logits (KL) for smoother learning signal.
e can combine with response distillation.

9.1.3 Practical tips

o filter low-quality teacher outputs; keep diversity.
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o decide whether to include chain-of-thought or only summarized reasoning
(policy/compliance dependent).
e use curriculum: easy — hard.

i Note

ELI5: Black-box distillation learns from the teacher’s final answers; white-
box distillation also learns from the teacher’s “confidence” (logits).

o Black-box: teacher generates CoT/tool traces — student learns from
traces (SFT / DPO).
e White-box: student matches teacher logits (requires weight access).

10 Capstone: The “Recipes” cheat sheet

10.0.1 How to use this table in interviews

Start from the product constraint, pick the simplest effective lever, then name
the failure mode and the mitigation. Interviewers reward structured thinking.

@ Tip

ELI5: The cheat sheet is a “choose-your-own-adventure”: pick the training
stage that fizes your specific problem with the least risk.

Recommended
Problem phase The recipe Key failure mode
Model lacks CPT 80% domain / catastrophic
jargon 20% replay (start) forgetting
+ gates
Strict JSON SFT + tooling  correct template template
schema + masking + mismatch
schema tests
Many PEFT QLoRA + adapter
customers multi-tenant interference
serving
Math/code Agentic RL / verifiers + reward hacking
logic reasoning GRPO /variants +
anti-hacking eval
High reliability Inference test-time scaling  latency/cost
+ verifier explosion
reranking
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11 End-of-chapter drills

Add a habit: answer drills with (1) diagnosis, (2) proposed lever, (3) risks, (4)
measurements.

1 Note

ELI5: A good system answer is “what I'd change, why, what could break,
and how I’d know.”

1. Design: Build a “Medical Scribe” that knows rare drug names (CPT) but
refuses to prescribe (policy + eval gates).

2. Systems: Explain how GRPO saves memory compared to PPO and why
that matters for training 70B+ models.

3. Tradeoff: You have a fixed compute budget. Do you spend it on DPO
(training) or test-time scaling (inference)?

4. Debug: Your SFT model answers correctly but formats the tool call
wrong. Do you add more data or switch to constrained decoding?

5. Agentic: Your agent fails on multi-step tool chaining. What do you
change in data (trajectories), reward/verifier design, and test-time search?

11.1 Appendix: References (suggested BibTeX keys)
You can populate references.bib with entries for these keys:

e lora_2021, qlora_2023

e dpo_paper_2023

o deepseek_math_2024 (GRPO)

e revisiting_grpo_2025 (GRPO variants; off-policy extensions)
e toolformer_2023, toollmm_2023, gorilla_2023

e verify_step_by_step_2024, math_shepherd_2023

e stability_gap_2024, stability_gap_acl_2025

e scaling_test_time_compute_agents_2025

e octothinker_2025, interplay_pre_mid_rl_2025
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