
3. Mid-Training
From CPT to Agentic RL: Foundations, recipes, and failure modes

Table of contents
0.1 Learning goals . 1
0.2 The big picture: The life cycle of an LLM 2

0.2.1 Interview framing: “Which knob would you turn?” 2
0.3 Data topology: the hidden interview topic 3

0.3.1 The three “topologies” you should be able to explain . . . 4
0.3.2 Quick mental check . 4

1 Phase 1: Mid-training / Continued Pretraining (CPT) 5
1.0.1 When CPT is the right tool 5
1.0.2 CPT design checklist (interview-ready) 5

1.1 What it is (and isn’t) . 5
1.1.1 What CPT optimizes . 5
1.1.2 What CPT is not . 5

1.2 Optional: Tokenizer extension . 6
1.2.1 When to extend . 6
1.2.2 How to extend (minimal-risk workflow) 6
1.2.3 Failure modes to mention 6

1.3 The stability gap . 7
1.3.1 Why it happens . 7
1.3.2 Debugging playbook . 7

0.1 Learning goals
Beyond memorizing definitions, interviews test whether you can choose the
right stage (CPT vs SFT vs RL vs distill) and anticipate failure modes.

LIGHTBULB Tip

ELI5: Training an LLM is like training a new hire: first you teach broad
skills, then company-specific knowledge, then “how we talk to customers,”
and finally you coach them with feedback on real tasks.

1

By the end of this chapter, you should be able to:

• Explain why mid-training (CPT) exists and how it differs from pretraining
and SFT.

• Implement critical data strategies: General Replay for memory, packing
for throughput, and chat templates + masking for instruction tuning.

• Apply PEFT (LoRA/QLoRA) strategies, including multi-tenant serving
patterns.

• Compare alignment techniques: PPO/RLHF vs. DPO/ORPO
vs. Agentic RL (e.g., GRPO and related variants).

• Design pipelines that optimize for Reasoning (System 2) using verifiers
and process rewards.

• Build reliable tool use systems (schema correctness + tool selection +
chaining).

• Apply test-time scaling (sampling, revision, verifier reranking) to boost
reliability.

• Debug common regressions like the stability gap, reward hacking, and
template mismatch.

0.2 The big picture: The life cycle of an LLM
This chapter organizes the landscape into a decision flow: What’s missing:
knowledge, behavior, preferences, reasoning reliability, or cost? Each corresponds
to a different lever.

0.2.1 Interview framing: “Which knob would you turn?”

When you’re given a product requirement, answer in this order:

1. Define the target behavior (format, safety, tool use, reasoning, latency).
2. Diagnose the gap (knowledge gap vs behavior gap vs optimization gap).
3. Pick the cheapest effective lever (prompt → SFT → DPO → RL →

CPT → distill).
4. Name the regression risks (forgetting, reward hacking, template mis-

match, latency).

INFO Note

ELI5: If the model doesn’t know the facts, teach it with reading (CPT). If
it knows facts but talks wrong, teach it with examples (SFT). If it needs
to prefer “better” answers, use preferences/RL. If it’s too slow/expensive,
compress it.

We treat training and inference as a pipeline of altering distributions and compute
budgets.

2

flowchart LR
A[Base Model �0] --> B{Domain gap?}

B -->|Yes: Knowledge/Vocab/Context| C[Mid-training / CPT]
B -->|No: Just behavior| D[SFT]

C --> E[�_mid]
E --> D
D --> F[�_sft]

F --> G{Alignment path}
G -->|Chat/Style| H[DPO / ORPO / PPO]
G -->|Reasoning/Math/Code| I[Agentic RL: GRPO / Self-training loops]

H --> J[�_aligned]
I --> J

J --> K{Inference budget?}
K -->|Low| L[Direct decode]
K -->|High| M[Test-time scaling]

J --> N[Distillation / Quantization]
N --> O[�_deploy]

INFO Note

Core mental model
• Pretraining: builds the engine (general capabilities).
• Mid-training (CPT): tunes the engine for terrain (domain knowl-

edge, context-length priors, sometimes RL-compatibility).
• Post-training (SFT/DPO/RL): teaches the driver (behavior,

safety, preference alignment).
• Test-time scaling: spends compute at inference to navigate complex

routes (better reliability without retraining).

0.3 Data topology: the hidden interview topic
Most real failures come from feeding the right data through the wrong loss
topology.

3

0.3.1 The three “topologies” you should be able to explain

• Packing (CPT): maximize tokens/GPU by concatenating documents to
fill the context window.

• Masking (SFT): compute loss only where you want supervision (typically
assistant tokens).

• Rollouts (RL): the policy generates full sequences; you score outcomes
and optimize expected reward.

0.3.2 Quick mental check

Ask: “Which tokens contribute gradients?”
- CPT: all tokens (next-token loss)
- SFT: assistant tokens only (masked)
- DPO: chosen vs rejected (contrast)
- RL: tokens sampled by the policy (on-policy)

LIGHTBULB Tip

ELI5: Same text, different learning: CPT learns to continue text, SFT
learns to answer like a tutor, RL learns by trying things and getting a
score.

A common interview failure is not distinguishing how data is constructed and
how loss is applied.

LIGHTBULB Tip

Packing vs masking vs rollouts
• Packing: concatenating docs to fill context (often used in pretrain-

ing/CPT; sometimes also used in SFT for throughput).
• Masking: loss only on assistant tokens (typical in SFT on chat

transcripts).
• Rollouts: generating full sequences until EOS (RL/agentic RL).

Enables exploration and verifier-based selection.

flowchart LR
A[Raw text / docs] --> B[CPT: next-token loss (often packed)]
C[Instruction chats] --> D[SFT: masked loss on assistant tokens]
E[Preference pairs] --> F[DPO/ORPO: contrast chosen vs rejected]
G[Prompts + Verifier/Env] --> H[Agentic RL: rollouts + scoring + optimize]

4

1 Phase 1: Mid-training / Continued Pretraining
(CPT)

CPT is the workhorse for domain specialization and long-context priors.
It’s also the most common place to introduce regressions if you don’t guardrail
general capabilities.

LIGHTBULB Tip

ELI5: CPT is “more reading”: you keep training the model on domain
documents so it picks up jargon and facts naturally.

1.0.1 When CPT is the right tool

Use CPT when you see: - high perplexity on in-domain corpora, - system-
atic entity/jargon failures, - domain-specific formatting/structures (legal docs,
codebases), - long-document understanding gaps.

1.0.2 CPT design checklist (interview-ready)

• Data: quality > quantity; de-dup, remove boilerplate, enforce doc bound-
aries.

• Mixture: start with replay (e.g., 80/20) and tune by regression gates.
• LR: typically much lower than initial pretraining peak LR.
• Eval: track both domain gains and general regressions continuously.

1.1 What it is (and isn’t)
1.1.1 What CPT optimizes

CPT uses the same next-token objective as base pretraining, but on a
different distribution.

• It tends to improve knowledge recall and domain fluency.
• It can also improve tool-use and reasoning indirectly when your domain

data contains those patterns (e.g., code repos, math solutions).

1.1.2 What CPT is not

• Not instruction-following by itself: you can CPT a model into a great
encyclopedia that still refuses to answer in JSON.

• Not a replacement for alignment: CPT can even make safety worse if your
corpus contains unsafe patterns.

5

INFO Note

ELI5: CPT teaches what to say; SFT teaches how to say it to a user.

Continued next-token training on a target distribution. It is necessary when
the base model lacks:

• domain knowledge (facts/jargon/entity priors),
• long-context priors (document structure, long-range retrieval),
• and sometimes RL-compatibility for reasoning-style RL (model-family

differences).

It is not SFT: SFT is about behavioral formatting and instruction following.

1.2 Optional: Tokenizer extension
Tokenizer extension can be worth it when your domain has many high-frequency
terms that get split into many sub-tokens (e.g., rare drug names, API identifiers,
legal citations).

LIGHTBULB Tip

ELI5: Tokenizer extension is like adding new dictionary words so the
model stops spelling domain terms letter-by-letter.

1.2.1 When to extend

• Decision rule: measure fragmentation rate on a domain vocabulary
list. If important terms routinely become 5+ tokens, you’re wasting context
and compute.

• Signal: you see frequent truncation/length issues, or the model mangles
domain terms (broken identifiers, misspellings, bad citations).

1.2.2 How to extend (minimal-risk workflow)

1. Compile a vocabulary shortlist (top entities, terms, APIs).
2. Add tokens for the worst offenders.
3. Resize embeddings; initialize new token rows (random, or average of

constituent sub-token embeddings).
4. Warm up: oversample examples containing the new tokens for the first

phase of CPT.

1.2.3 Failure modes to mention

• Undertrained tokens: new tokens behave like noise early → mitigated
via oversampling and warm-up.

6

• Segmentation mismatch: any downstream pipeline that tokenizes text
must use the updated tokenizer.

• Distribution shock: adding tokens changes token counts and packing;
re-check sequence length assumptions.

1.3 The stability gap
1.3.1 Why it happens

Early in CPT, gradients strongly adapt the model to the new distribution, often
pushing it away from general-purpose representations.

Common contributors: - too-high learning rate, - low diversity domain data
(narrow corpora), - insufficient general replay, - noisy/mislabeled documents
(scrapes, templated boilerplate).

1.3.2 Debugging playbook

If general benchmarks drop sharply: - decrease LR and/or increase warm-
up, - increase replay ratio, - improve data quality (dedup, filter spam), - add
regularization to the reference (e.g., KL to base logits if available).

INFO Note

ELI5: Stability gap is like cramming for one exam and temporarily
forgetting other subjects—replay is doing a little “general homework” to
prevent that.

CPT often causes an early dip in general performance before recovering.

• Mitigation: General replay (e.g., 80% domain / 20% replay as a starting
point), plus regression gates.

Pseudocode: CPT loop with packing + replay

Practical add-ons (what interviews like)
- **Curriculum:** start with higher replay, then anneal toward more domain.
- **Domain mixing:** if multiple sub-domains, use adaptive sampling (upweight domains with high loss).
- **Guardrails:** run a small regression suite every N steps; stop/rollback on big drops.

for step in range(T):
batch = sample(D_domain) if rand() < p_domain else sample(D_replay)

Packing: concatenate docs to fill context (no padding; delimit with EOS)
x = pack_sequences(batch, seq_len=L)

Next-token objective
loss = cross_entropy(model(x[:, :-1]), x[:, 1:])

7

loss.backward()
optimizer.step()
optimizer.zero_grad()

if step % eval_every == 0 and regression_failed():
tune(p_domain="down", lr="down", data_quality="up")

INFO Note

Mid-training to enable RL scaling (optional add-on)
Two useful framing papers for the “CPT → RL compatibility” story are:

• OctoThinker: Mid-training Incentivizes Reinforcement Learning
Scaling (arXiv:2506.20512) [@octothinker_2025]

• On the Interplay of Pre-Training, Mid-Training, and RL on Reasoning
Language Models (arXiv:2512.07783) [@interplay_pre_mid_rl_2025]

8

	Learning goals
	The big picture: The life cycle of an LLM
	Interview framing: ``Which knob would you turn?''

	Data topology: the hidden interview topic
	The three ``topologies'' you should be able to explain
	Quick mental check

	Phase 1: Mid-training / Continued Pretraining (CPT)
	When CPT is the right tool
	CPT design checklist (interview-ready)
	What it is (and isn't)
	What CPT optimizes
	What CPT is not

	Optional: Tokenizer extension
	When to extend
	How to extend (minimal-risk workflow)
	Failure modes to mention

	The stability gap
	Why it happens
	Debugging playbook

