

5. Inference & Compression

The Physics of Generation: From GQA to Disaggregated Serving

Table of contents

0.1	Overview	2
0.2	Learning goals	3
1	The physics of inference	3
1.1	Prefill vs decode (the “physics” of generation)	3
1.1.1	Phase 1: Prefill (the “reading” phase)	4
1.1.2	Phase 2: Decode (the “writing” phase)	4
1.1.3	Interview Q&A: TTFT vs ITL	5
1.2	Arithmetic intensity and the “compute vs bandwidth” trap	6
1.2.1	TODO: remove equation due to rendering error	6
1.2.2	Why prefill tends to be compute-bound	6
1.2.3	Why decode tends to be memory-bound	6
2	Memory bottlenecks: KV cache	6
2.1	Attention architecture variants: MHA vs. MQA vs. GQA	6
2.1.1	KV cache scaling rule	7
2.1.2	TODO: remove equation due to rendering error	7
2.2	What the KV cache is	7
2.3	The math: estimating KV cache size	7
2.3.1	Worked example (generic, interview-style)	7
2.4	PagedAttention: the OS metaphor	8
2.5	KV cache quantization	8
3	Kernel and attention optimizations	8
3.1	FlashAttention	8
3.2	Kernel fusion and fused ops	9
3.3	Page attention vs flash attention	9
4	System optimization: batching & scheduling	9
4.1	Continuous batching (in-flight batching)	9
4.1.1	Admission control (why it matters)	10
4.2	Chunked prefill (solving the convoy effect)	10

4.3	Prefix caching (prompt caching)	10
4.4	Speculative decoding (trade compute for bandwidth)	10
4.5	Guided decoding and constrained generation	11
5	Production patterns: disaggregated serving	11
5.1	Why disaggregate prefill and decode?	11
5.2	Prefill/Decode (P/D) split	11
5.3	Multi-LoRA serving (the “Bento” pattern)	11
5.3.1	Mental model	12
5.3.2	Practical engineering points (interview-grade)	12
6	Compression: shrinking the model	12
6.1	Quantization	12
6.1.1	Taxonomy	12
6.1.2	The outlier problem (why naive quant fails)	13
6.2	Pruning and sparsity	13
6.2.1	Types	13
6.3	Knowledge distillation	13
6.3.1	Forms	13
6.3.2	When it wins	14
6.4	Low-rank factorization and adapters	14
7	Framework landscape	14
7.1	Training framework (where the checkpoint comes from)	14
7.2	Inference framework (where tokens come from)	14
8	Evaluation & metrics	14
8.1	Core metrics	14
8.2	Quality regression	14
9	Capstone: inference decision matrix	15
10	Appendix: interview drills	15
10.1	Drill 1: batch size vs latency	15
10.2	Drill 2: OOM on long prompts	15
10.3	Drill 3: “why is decode slow?”	16
10.4	Drill 4: GQA vs MHA (KV cache impact)	16

0.1 Overview

This chapter is a practical guide to **efficient LLM inference** and **compression**, framed the way modern MLE interviews are framed: *identify the bottleneck (compute vs memory vs network), quantify it, then pick the right system + model levers.*

We'll focus on:

- **Inference physics:** *prefill* vs *decode* (compute-bound vs memory-bound)

- **KV cache:** sizing, fragmentation, paging, quantization
- **System levers:** continuous batching, chunked prefill, prefix caching, speculative decoding, guided decoding
- **Serving architecture:** P/D disaggregation, multi-tenancy, routing
- **Compression:** quantization, pruning/sparsity, distillation, low-rank/adapters
- **Evaluation:** TTFT/TPOT/throughput + quality regression gates

i Note

If you only remember one thing: **Prefill scales like GEMM (compute-bound). Decode scales like KV + weight traffic (memory-bound).**

0.2 Learning goals

By the end of this chapter, you should be able to:

- **Analyze the physics:** explain why **prefill** is typically compute-bound and **decode** is typically memory-/bandwidth-bound.
- **Calculate capacity:** estimate KV cache requirements under **MHA** vs. **MQA** vs. **GQA** (and how that changes max concurrency).
- **Design the stack:** choose engines (e.g., vLLM vs. TRT-LLM) and scheduling strategies (continuous batching, chunked prefill, prefix caching).
- **Optimize kernels:** explain how **FlashAttention** and **kernel fusion** reduce HBM traffic and launch overhead.
- **Apply compression:** select the right quantization strategy (weight-only vs. activation vs. KV) and predict TTFT/TPOT impacts.
- **Architect for scale:** design **disaggregated serving** and **multi-LoRA** systems for cost efficiency.

ight-only vs. activation vs. KV) and predict TTFT/TPOT impacts. - **Architect for scale:** design **disaggregated serving** and **multi-LoRA** systems for cost efficiency.

1 The physics of inference

1.1 Prefill vs decode (the “physics” of generation)

To understand LLM performance, internalize that “generating text” is actually **two different workloads** executed in sequence.

1.1.1 Phase 1: Prefill (the “reading” phase)

Also known as: prompt processing, initialization.

What happens: the model processes the full prompt (length ($L_{\text{ext}\{\text{prompt}\}}$)) in parallel, producing hidden states and building the initial KV cache.

- **Operation:** large **matrix–matrix** multiplies (GEMM) across many prompt tokens.
- **Compute:** high. Attention has a quadratic term in prompt length (roughly $O(L_{\text{ext}\{\text{prompt}\}}^2)$ for full attention), and MLP/linear layers are heavy GEMMs.
- **Memory access:** relatively efficient weight reuse: weights are loaded and reused across many tokens in the prompt (and across batch).

Arithmetic intensity: typically **high** → **compute-bound**.

Key latency metric: **TTFT** (time to first token), dominated by queueing + prefill.

1.1.2 Phase 2: Decode (the “writing” phase)

Also known as: autoregressive token generation.

What happens: the model generates output tokens sequentially. At step (t), it consumes the latest token and previously cached KV to produce the next token.

- **Operation:** effectively **matrix–vector** (GEMV) or small-GEMM at low batch sizes, plus **KV cache reads**.
- **Compute:** much smaller per step than prefill (you’re processing ~1 token per sequence).
- **Memory access:** heavy. Each decode step must read:
 - substantial portions of the model weights (dominant at small batch; mitigated at higher batch via reuse), and
 - the growing KV history for attention for each active sequence.

Arithmetic intensity: typically **low** → **memory-bandwidth / scheduling bound**.

Key latency metric: **TPOT/ITL** (time per output token / inter-token latency), dominated by decode efficiency (KV traffic + kernel/scheduler overhead).

```
gantt
    title Lifecycle of a request (conceptual)
    dateFormat s
    axisFormat %s

    section Request A
    Prefill (compute-bound) :active, p1, 0, 2s
    Decode t=1 (memory-bound) :d1, after p1, 0.5s
```

```

Decode t=2 :d2, after d1, 0.5s
Decode t=3 :d3, after d2, 0.5s

section Request B
Wait in queue :crit, 0, 1s
Prefill :p2, after p1, 1s
Decode t=1 :d4, after p2, 0.5s

```

i The roofline implication (why this dichotomy matters)

Feature	Prefill	Decode
Limiting factor	Compute (FLOPs)	Memory bandwidth (GB/s) + KV capacity
Typical hardware signature	Hot tensor cores	Tensor cores waiting on memory / scheduler
Key metric	TTFT	TPOT / ITL
Batching effect	More batch → more compute	More batch can be “cheap” until compute catches up to bandwidth
Common optimizations	FlashAttention, tensor parallel, compilation/fusions	Paged KV, KV/weight quantization, speculative decoding, scheduling

Decode batching intuition: when decode is bandwidth-bound, you can often increase the number of active sequences with only a modest TPOT penalty—until compute becomes dominant.

1.1.3 Interview Q&A: TTFT vs ITL

- If **TTFT** is too high: prefill is slow → add compute (faster GPU), improve kernels (FlashAttention), reduce prompt length, enable prefix caching, or shard (TP) for very large models.
- If **ITL/TPOT** is too high: decode is slow → reduce data moved (weight/KV quantization), improve KV management (paged KV), use speculative decoding, and fix scheduling/continuous batching.

1.2 Arithmetic intensity and the “compute vs bandwidth” trap

A back-of-the-envelope way to reason about bottlenecks is **arithmetic intensity**:

1.2.1 TODO: remove equation due to rendering error

- **High** (I) → compute-bound (tensor cores busy)
- **Low** (I) → memory-bound (cores waiting for HBM)

1.2.2 Why prefill tends to be compute-bound

In prefill, weights get reused across many prompt tokens in a batch, boosting (I).

1.2.3 Why decode tends to be memory-bound

In decode, at small batch sizes you do relatively little compute per token but still must read: - weights (unless cached effectively at higher batch), - and a growing KV cache for attention.

Note

A common real-world symptom: *high GPU “utilization” reported, but low tensor core utilization* (the GPU is busy waiting on memory or launching kernels).

2 Memory bottlenecks: KV cache

2.1 Attention architecture variants: MHA vs. MQA vs. GQA

You can’t reason about KV cache cost without knowing how many **KV heads** your model has.

- **MHA (Multi-Head Attention):** ($N_{\{kv\text{-heads}\}} = N_{\{q\text{-heads}\}}$). Highest KV memory/bandwidth.
- **MQA (Multi-Query Attention):** ($N_{\{kv\text{-heads}\}} = 1$). Smallest KV cache, but can reduce quality for some tasks.
- **GQA (Grouped-Query Attention):** ($1 < N_{\{kv\text{-heads}\}} < N_{\{q\text{-heads}\}}$). Common “Goldilocks” choice (used in many modern models).

2.1.1 KV cache scaling rule

Holding everything else fixed, KV cache size (and decode KV bandwidth) scales **linearly** with ($N_{\text{kv-heads}}$). Therefore:

2.1.2 TODO: remove equation due to rendering error

Example: if ($N_{\text{q-heads}}=64$) and ($N_{\text{kv-heads}}=8$), then KV cache is about ($64/8 = 8\times$) smaller than MHA.

💡 Tip

Interview move: If TPOT improves after switching to GQA, say: **less KV read per step → less bandwidth pressure → higher concurrency at the same latency.**

2.2 What the KV cache is

For attention at time (t), the model needs keys/values for **all prior tokens** (1..t). Recomputing is too slow, so we cache K/V per layer.

2.3 The math: estimating KV cache size

A standard interview back-of-the-envelope question:

[KV bytes per token ; ; $2 \times N_{\text{layers}} \times N_{\text{kv-heads}} \times D_{\text{head}}$
 $\times P_{\text{bytes}}$]

Total KV footprint for a sequence length (L) and concurrency (B):

[KV bytes total ; ; $B \times L \times$ KV bytes per token]

Where: - the **2** is for K and V, - ($N_{\text{kv-heads}}$) is **KV heads** (important: with GQA/MQA this can be *much smaller* than attention heads), - (P_{bytes}) is bytes per element (e.g., 2 for FP16/BF16; 1 for FP8/INT8).

💡 Tip

Don't forget GQA: KV cache size depends on **KV heads**, not attention heads.

2.3.1 Worked example (generic, interview-style)

Assume: - ($N_{\text{layers}}=80$), - ($N_{\text{kv-heads}}=8$), - ($D_{\text{head}}=128$), - FP16 → ($P_{\text{bytes}}=2$).

KV bytes/token:

[$2 \times 80 \times 8 \times 128 \times 2 = 327{,}680$ bytes 0.31 MB/token]

At (L=8{,}192), KV per sequence (2.5) GB.

Implication: long context + high concurrency is primarily a *memory capacity* problem.

2.4 PagedAttention: the OS metaphor

Naively allocating a contiguous KV tensor for max length wastes memory (fragmentation). **PagedAttention** treats KV like virtual memory:

1. Divide KV into fixed-size blocks (e.g., 16 tokens per block).
2. Allocate blocks on demand.
3. Keep a “page table” mapping sequence positions to blocks.

```
flowchart LR
  A[Sequence tokens] --> B[KV pages: blocks of 16 tokens]
  B --> C[Non-contiguous allocation]
  C --> D[Lower fragmentation → higher concurrency]
```

Why it matters - Near-zero fragmentation increases effective capacity. - Enables **preemption** and **continuous batching**.

2.5 KV cache quantization

KV cache can be quantized (FP16 → FP8/INT8/INT4) to: - increase max concurrency, - reduce memory bandwidth in decode.

Tradeoff: quality regressions often show up in: - long-context retrieval, - “needle in haystack” style tasks, - tool-use correctness when evidence is mid-context.

3 Kernel and attention optimizations

3.1 FlashAttention

FlashAttention improves attention speed by reducing HBM traffic and fusing operations. Use it when attention becomes dominant (long context, high throughput settings).

Practical tips - Validate kernel compatibility: MHA/GQA/MQA, RoPE, sliding window. - Re-check numerics when changing precision (BF16/FP16/FP8).

3.2 Kernel fusion and fused ops

Even when an operation is “small,” launching many GPU kernels can be expensive (CPU GPU coordination, scheduling, synchronization). **Kernel fusion** combines multiple steps into fewer launches to reduce overhead and keep data on-chip longer.

Common fusions around attention blocks:

- scale + mask + softmax (+ dropout)
- bias + activation + residual
- fused layernorm, fused rotary embeddings (implementation-dependent)

Why it matters - Prefill: improves throughput by reducing launch overhead and memory traffic. - Decode: reduces per-token overhead where kernels are tiny and launch costs dominate.

i Note

Kernel fusion complements FlashAttention: **FlashAttention reduces HBM traffic inside attention; fusion reduces overhead around it.**

3.3 Page attention vs flash attention

They solve different problems:

- **FlashAttention:** faster attention compute (bandwidth reduction within attention).
- **PagedAttention:** smarter KV memory management (capacity + scheduling + fragmentation).

Interview pattern: propose both when context is long **and** concurrency is high.

4 System optimization: batching & scheduling

4.1 Continuous batching (in-flight batching)

Static batching waits for the batch to finish; continuous batching inserts new requests as slots open.

- Boosts throughput (tokens/sec/GPU).
- Can improve p95/p99 by reducing head-of-line blocking if paired with admission control.

```
flowchart TB
    Q[Request queue] --> S[Scheduler]
    subgraph GPU_Batch
```

```

A1 [Req A active]
B1 [Req B finishes] -->|evict| C1 [Req C admitted]
D1 [Req D active]
end
S --> C1

```

4.1.1 Admission control (why it matters)

Without admission control, you can over-admit, blow KV capacity, and destroy tail latency.

Common policies: - cap active sequences by KV budget, - prioritize short requests (SRPT-like heuristics), - preempt low-priority or very long decode tails.

4.2 Chunked prefill (solving the convoy effect)

A huge prompt (RAG with tens of thousands of tokens) can “freeze” the batch if prefill is done atomically.

Chunked prefill: 1. Prefill chunk 1 for long request. 2. Decode steps for short requests. 3. Prefill chunk 2, etc.

Benefit: smoother ITL and lower p99.

4.3 Prefix caching (prompt caching)

If many requests share a prefix (system prompt, policy text, long instructions), caching KV for that prefix avoids recomputation.

Practical tips - Normalize prompts for cache hits (templating consistency).
- Split stable prefix vs volatile suffix. - Track prefix-cache hit ratio and saved prefill tokens.

4.4 Speculative decoding (trade compute for bandwidth)

Decode is often memory-bound. Speculative decoding uses: - a small **draft model** to propose (K) tokens, - a big **target model** to verify those tokens in one pass.

Win condition: high acceptance rate and draft much cheaper than target.

```

flowchart LR
    A[Prompt + KV] --> B[Draft proposes K tokens]
    B --> C[Target verifies in 1 pass]

```

```
C -->|accept m<=K| D[Advance by m tokens]
C -->|reject| E[Fallback decode]
```

4.5 Guided decoding and constrained generation

Constrained decoding enforces: - JSON schema correctness, - tool argument validity, - grammar constraints.

Tradeoffs: - constraint checking overhead, - can reduce diversity (sometimes desirable for tools).

5 Production patterns: disaggregated serving

5.1 Why disaggregate prefill and decode?

Prefill and decode want different “hardware personalities”:

- Prefill: compute-heavy (benefits from high tensor-core throughput).
- Decode: bandwidth + memory heavy (KV traffic; long tails).

Colocating both can create interference and tail-latency spikes.

5.2 Prefill/Decode (P/D) split

Pattern 1. Prefill fleet runs prompts, builds KV. 2. Transfer KV (and state) over fast interconnect. 3. Decode fleet continues autoregressive generation.

```
flowchart LR
  U[User request] --> P[Prefill workers]
  P -->|KV + state| X[Transfer]
  X --> D[Decode workers]
  D --> U2[Stream tokens]
```

Design questions to cover - KV transfer cost (bytes = KV size): when is it worth it? - network fabric (NVLink / InfiniBand / TCP): what limits you? - failure handling: retries, partial streams, idempotency - observability: TTFT split across fleets, queueing per tier

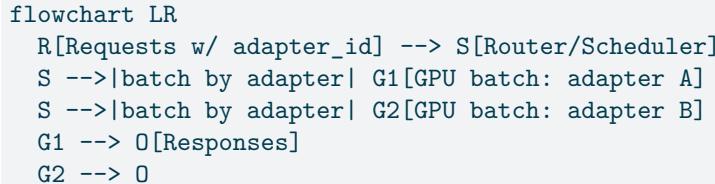
5.3 Multi-LoRA serving (the “Bento” pattern)

Serving many fine-tuned variants (per customer, per feature, per locale) naively requires one GPU (or replica set) per model. **Multi-LoRA serving** keeps a

single frozen base model resident and dynamically applies lightweight adapter deltas per request.

5.3.1 Mental model

- **Base weights:** shared, always loaded
- **Adapters (LoRA):** small, swappable deltas (often <1–2% of base params)
- **Scheduler:** groups requests by (base, adapter) to batch efficiently



5.3.2 Practical engineering points (interview-grade)

- **Batching constraint:** mixing many adapters in the same decode batch can add overhead; most systems batch by adapter_id.
- **Caching:** prefix caching can be per-(base, adapter) depending on implementation.
- **Hot set vs cold set:** keep popular adapters in GPU memory; page less-used adapters (or load on demand).
- **Isolation:** ensure correct adapter routing to avoid “tenant bleed.”

```
# Pseudocode: adapter-aware batching (conceptual)
while True:
    reqs = dequeue_ready()
    groups = groupby(reqs, key=lambda r: r.adapter_id)
    for adapter_id, batch in groups.items():
        activate_adapter(adapter_id)           # swap/merge/apply LoRA
        run_decode_or_prefill(batch)
```


Tip

Interview one-liner: “Multi-LoRA turns N fine-tuned models into **one shared base + N small deltas**, maximizing GPU utilization and lowering cost-per-request.”

6 Compression: shrinking the model

6.1 Quantization

6.1.1 Taxonomy

Type	Target	What changes	Best for
Weight-only (INT8/INT4)	Model size + bandwidth	store weights low-bit; dequantize for compute	memory-bound decode, edge/CPU
Activation quant (INT8/FP8)	Compute throughput	matmuls in lower precision	compute-bound prefill, large batches
KV cache quant	Memory capacity + bandwidth	K/V stored low precision	long context, high concurrency

6.1.2 The outlier problem (why naive quant fails)

LLMs have outlier channels / activation spikes. Naive quantization clips them and can crater quality.

Mitigation strategies to mention: - outlier-aware weight quant (e.g., AWQ-style), - activation smoothing (SmoothQuant-style), - selective higher precision for outlier blocks.

Practical tips - Evaluate long-context retrieval and tool-call correctness after quant. - Re-tune decoding params if distribution shifts. - Calibrate on production-like prompts (length, language, tools).

6.2 Pruning and sparsity

6.2.1 Types

- **Unstructured pruning:** hard to accelerate without specialized kernels.
- **Structured pruning:** block/N:M sparsity can yield real speedups on supported hardware.
- **Architectural sparsity:** MoE routing is “sparsity by design.”

Interview hooks - why structured sparsity is preferred for real latency wins, - why pruning can introduce non-linear “quality cliffs.”

6.3 Knowledge distillation

6.3.1 Forms

- **Response distillation:** student learns teacher outputs (SFT on traces).
- **Logit distillation:** KL to teacher logits (needs teacher access).
- **On-policy distillation:** student samples, teacher guides (reduces distillation distribution mismatch).

6.3.2 When it wins

- cheaper model at similar behavior,
- stabilize post-RL policies,
- compress tool-use / reasoning traces into smaller students.

6.4 Low-rank factorization and adapters

- low-rank factorization of weights,
- adapter-based PEFT (LoRA/DoRA-style),
- multi-adapter serving and routing considerations.

7 Framework landscape

TODO: RL. vllm, sclang, triton server

7.1 Training framework (where the checkpoint comes from)

Topics to include: - FSDP/ZeRO tradeoffs, activation checkpointing - tensor/pipeline parallelism, microbatching - mixed precision and numerics checks - how training-time decisions affect inference (e.g., GQA/MQA, context length)

7.2 Inference framework (where tokens come from)

What to highlight in interviews: - KV paging + continuous batching support - prefix caching + chunked prefill support - speculative decoding integration - quantization support (weights and KV) - guided decoding support for tools

8 Evaluation & metrics

8.1 Core metrics

1. **TTFT**: time to first token (queue + prefill)
2. **TPOT / ITL**: time per output token / inter-token latency (decode efficiency)
3. **Throughput**: tokens/sec/GPU (utilization)
4. **Cost**: \$/1M tokens (hardware + ops)

8.2 Quality regression

- **Perplexity (PPL)**: good for sanity checks across quantization/caching changes (within same tokenizer/eval setup).

- **Needle-in-a-haystack variants:** stress long-context retention (especially after KV quantization).
- **Tool-use correctness:** JSON validity + end-to-end tool success rate.
- **Prompt continuation similarity:** ROUGE-L / BLEU / BERTScore (use cautiously).

9 Capstone: inference decision matrix

Constraint	Strategy	Why
Latency sensitive (chat)	continuous batching + speculative decoding	reduce TPOT while keeping utilization
Throughput sensitive (batch jobs)	large batch + activation quant/FP8	saturate compute, amortize overhead
Long context (RAG/docs)	GQA/MQA + paged KV + chunked prefill + KV quant	reduce KV footprint + prevent OOM + reduce head-of-line
Massive scale (>10k r/s)	P/D disaggregation	scale compute (prefill) vs bandwidth (decode) independently

10 Appendix: interview drills

10.1 Drill 1: batch size vs latency

Q: Why does increasing batch size improve throughput but hurt latency?

A (excellent): - Throughput improves because you amortize weight loads and kernel launch overhead across more tokens/requests (higher arithmetic intensity).
- Latency can worsen because each request waits for larger batch prefill/step completion, and queueing increases if you chase max utilization.

10.2 Drill 2: OOM on long prompts

Q: Your model is OOM’ing on long prompts. What do you do?

A (excellent): 1. Paged KV / block allocation to reduce fragmentation. 2. KV quantization (FP16 → FP8 halves KV bytes). 3. Admission control (cap active sequences by KV budget). 4. If a single request exceeds memory: tensor parallel / offload / disaggregation.

10.3 Drill 3: “why is decode slow?”

Q: Decode TPOT got worse after a change. What do you check?

A (excellent): - KV cache size and precision (did L or concurrency grow? did KV quant disable?) - batching/scheduler (are we at small batch? poor packing? preemption?) - kernel path (did attention kernel disable? did GQA/MQA mismatch?) - sampling overhead (guided decoding constraints, tool validators)

10.4 Drill 4: GQA vs MHA (KV cache impact)

Q: How does **Grouped-Query Attention (GQA)** improve inference vs standard **MHA**?

A (excellent): - GQA reduces the number of **KV heads** ($N_{\{kv\}}$) relative to query heads (N_q), so KV cache size scales down by roughly $(N_q/N_{\{kv\}})$. - That cuts **decode bandwidth** (less KV to read per step) and increases max concurrency before OOM. - It's a “Goldilocks” tradeoff: smaller KV than MHA, usually better quality than MQA.