6. Inference & Compression

The Physics of Generation: From GQA to Disaggregated Serving
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0.1 Overview

This chapter is a practical guide to efficient LLM inference and compression,
framed the way modern MLE interviews are framed: identify the bottleneck
(compute vs memory vs network), quantify it, then pick the right system + model
levers.



We’ll focus on:

Inference physics: prefill vs decode (compute-bound vs memory-bound)
KV cache: sizing, fragmentation, paging, quantization

System levers: continuous batching, chunked prefill, prefix caching,
speculative decoding, guided decoding

Serving architecture: P/D disaggregation, multi-tenancy, routing
Compression:  quantization, pruning/sparsity, distillation, low-
rank/adapters

Evaluation: TTFT/TPOT/throughput + quality regression gates

i Note

If you only remember one thing: Prefill scales like GEMM (compute-
bound). Decode scales like KV + weight traffic (memory-bound).

0.2

Learning goals

By the end of this chapter, you should be able to:

Analyze the physics: explain why prefill is typically compute-bound
and decode is typically memory-/bandwidth-bound.

Calculate capacity: estimate KV cache requirements under MHA
vs. MQA vs. GQA (and how that changes max concurrency).

Design the stack: choose engines (e.g., vLLM vs. TRT-LLM) and
scheduling strategies (continuous batching, chunked prefill, prefix caching).
Optimize kernels: explain how FlashAttention and kernel fusion
reduce HBM traffic and launch overhead.

Apply compression: select the right quantization strategy (weight-only
vs. activation vs. KV) and predict TTFT/TPOT impacts.

Architect for scale: design disaggregated serving and multi-LoRA
systems for cost efficiency.

ight-only vs. activation vs. KV) and predict TTFT/TPOT impacts. - Architect
for scale: design disaggregated serving and multi-LoR A systems for cost
efficiency.

1 The physics of inference

1.1

Prefill vs decode (the “physics” of generation)

To understand LLM performance, internalize that “generating text” is actually
two different workloads executed in sequence.



1.1.1 Phase 1: Prefill (the “reading” phase)
Also known as: prompt processing, initialization.

What happens: the model processes the full prompt (length (L_ {
ext{prompt}})) in parallel, producing hidden states and building the initial KV
cache.

o Operation: large matrix—matrix multiplies (GEMM) across many
prompt tokens.

o Compute: high. Attention has a quadratic term in prompt length (roughly
(O(L_{ ext{prompt}}~2)) for full attention), and MLP/linear layers are
heavy GEMMs.

e Memory access: relatively efficient weight reuse: weights are loaded and
reused across many tokens in the prompt (and across batch).

Arithmetic intensity: typically high — compute-bound.

Key latency metric: TTFT (time to first token), dominated by queueing +
prefill.

1.1.2 Phase 2: Decode (the “writing” phase)
Also known as: autoregressive token gemeration.

What happens: the model generates output tokens sequentially. At step (t), it
consumes the latest token and previously cached KV to produce the next token.

o Operation: effectively matrix—vector (GEMV) or small- GEMM at low
batch sizes, plus KV cache reads.
o Compute: much smaller per step than prefill (you're processing ~1 token
per sequence).
¢ Memory access: heavy. Each decode step must read:
— substantial portions of the model weights (dominant at small batch;
mitigated at higher batch via reuse), and
— the growing KV history for attention for each active sequence.

Arithmetic intensity: typically low — memory-bandwidth / scheduling
bound.

Key latency metric: TPOT /ITL (time per output token / inter-token la-
tency), dominated by decode efficiency (KV traffic + kernel/scheduler overhead).

gantt
title Lifecycle of a request (conceptual)
dateFormat s
axisFormat %s

section Request A
Prefill (compute-bound) :active, pl, 0, 2s
Decode t=1 (memory-bound) :d1, after pl, 0.5s



Decode t=2 :d2, after di, 0.5s
Decode t=3 :d3, after d2, 0.5s

section Request B

Wait in queue :crit, 0, 1s
Prefill :p2, after pl, 1s
Decode t=1 :d4, after p2, 0.5s

1 The roofline implication (why this dichotomy matters)

Feature Prefill Decode

Limiting factor Compute (FLOPs) Memory bandwidth
(GB/s) + KV
capacity

Typical hardware
signature

Key metric
Batching effect

Common
optimizations

Hot tensor cores

TTFT
More batch — more
compute

FlashAttention, tensor
parallel,
compilation/fusions

Tensor cores waiting
on memory / scheduler
TPOT / ITL

More batch can be
“cheap” until compute
catches up to
bandwidth

Paged KV, KV /weight
quantization,
speculative decoding,
scheduling

Decode batching intuition: when decode is bandwidth-bound, you can
often increase the number of active sequences with only a modest TPOT
penalty—until compute becomes dominant.

1.1.3 Interview Q&A: TTFT vs ITL

o If TTFT is too high: prefill is slow — add compute (faster GPU),
improve kernels (FlashAttention), reduce prompt length, enable
prefix caching, or shard (TP) for very large models.

o If ITL/TPOT is too high: decode is slow — reduce data moved
(weight /KV quantization), improve KV management (paged KV),
use speculative decoding, and fix scheduling/continuous batching.




1.2 Arithmetic intensity and the “compute vs bandwidth”
trap

A back-of-the-envelope way to reason about bottlenecks is arithmetic intensity:

1.2.1 TODO: remove equation due to rendering error
e High (I) — compute-bound (tensor cores busy)
e Low (I) — memory-bound (cores waiting for HBM)
1.2.2 Why prefill tends to be compute-bound

In prefill, weights get reused across many prompt tokens in a batch, boosting (I).

1.2.3 Why decode tends to be memory-bound

In decode, at small batch sizes you do relatively little compute per token but
still must read: - weights (unless cached effectively at higher batch), - and a
growing KV cache for attention.

1 Note

A common real-world symptom: high GPU “utilization” reported, but low
tensor core utilization (the GPU is busy waiting on memory or launching
kernels).

2 Memory bottlenecks: KV cache

2.1 Attention architecture variants: MHA vs. MQA
vs. GQA

You can’t reason about KV cache cost without knowing how many KV heads
your model has.

« MHA (Multi-Head Attention): (N_ {kv-heads} = N_ {q-heads}).
Highest KV memory/bandwidth.

o MQA (Multi-Query Attention): (N_ {kv-heads} = 1). Smallest KV
cache, but can reduce quality for some tasks.

e GQA (Grouped-Query Attention): (1 < N_{kv-heads} <
N_ {g-heads}). Common “Goldilocks” choice (used in many modern
models).



2.1.1 KV cache scaling rule

Holding everything else fixed, KV cache size (and decode KV bandwidth) scales
linearly with (N_ {kv-heads}). Therefore:

2.1.2 TODO: remove equation due to rendering error

Example: if (N_{q-heads}=64) and (N_ {kv-heads}=8), then KV cache is
about (64/8 = 8x) smaller than MHA.

@ Tip

Interview move: If TPOT improves after switching to GQA, say: less
KV read per step — less bandwidth pressure — higher concur-
rency at the same latency.

2.2 What the KV cache is

For attention at time (t), the model needs keys/values for all prior tokens
(1..t). Recomputing is too slow, so we cache K/V per layer.

2.3 The math: estimating KV cache size

A standard interview back-of-the-envelope question:

[ KV bytes per token ;; 2 xN_{layers} xN_{kv-heads} xD_{head}
xP_ {bytes} ]

Total KV footprint for a sequence length (L) and concurrency (B):
[ KV bytes total ; ; B xL xKV bytes per token ]

Where: - the 2 is for K and V, - (N_ {kv-heads}) is KV heads (important:
with GQA/MQA this can be much smaller than attention heads), - (P__{bytes})
is bytes per element (e.g., 2 for FP16/BF16; 1 for FP8/INTS).

@ Tip

Don’t forget GQA: KV cache size depends on KV heads, not attention
heads.

2.3.1 Worked example (generic, interview-style)

Assume: - (N_ {layers}=80), - (N_ {kv-heads}=8), - (D_ {head}=128), - FP16
— (P__{bytes}=2).

KV bytes/token:
[2 x80 x8 x128 x2 = 327{,}680;bytes 0.31;MB/token ]



At (L=8{,}192), KV per sequence ( 2.5) GB.

Implication: long context + high concurrency is primarily a memory capacity
problem.

2.4 PagedAttention: the OS metaphor

Naively allocating a contiguous KV tensor for max length wastes memory
(fragmentation). PagedAttention treats KV like virtual memory:

1. Divide KV into fixed-size blocks (e.g., 16 tokens per block).
2. Allocate blocks on demand.
3. Keep a “page table” mapping sequence positions to blocks.

flowchart LR
A[Sequence tokens] --> B[KV pages: blocks of 16 tokens]
B --> C[Non-contiguous allocation]
C --> D[Lower fragmentation - higher concurrency]

Why it matters - Near-zero fragmentation increases effective capacity. -
Enables preemption and continuous batching.

2.5 KV cache quantization

KV cache can be quantized (FP16 — FP8/INT8/INT4) to: - increase max
concurrency, - reduce memory bandwidth in decode.

Tradeoff: quality regressions often show up in: - long-context retrieval, - “needle
in haystack” style tasks, - tool-use correctness when evidence is mid-context.

3 Kernel and attention optimizations

3.1 FlashAttention

FlashAttention improves attention speed by reducing HBM traffic and fusing op-
erations. Use it when attention becomes dominant (long context, high throughput
settings).

Practical tips - Validate kernel compatibility: MHA/GQA/MQA, RoPE, sliding
window. - Re-check numerics when changing precision (BF16/FP16/FP8).



3.2 Kernel fusion and fused ops

Even when an operation is “small,” launching many GPU kernels can be expensive
(CPU GPU coordination, scheduling, synchronization). Kernel fusion combines
multiple steps into fewer launches to reduce overhead and keep data on-chip
longer.

Common fusions around attention blocks:

« scale + mask + softmax (4 dropout)
e bias + activation + residual
o fused layernorm, fused rotary embeddings (implementation-dependent)

Why it matters - Prefill: improves throughput by reducing launch overhead
and memory traffic. - Decode: reduces per-token overhead where kernels are
tiny and launch costs dominate.

i Note

Kernel fusion complements FlashAttention: FlashAttention reduces
HBM traffic inside attention; fusion reduces overhead around it.

3.3 Page attention vs flash attention
They solve different problems:

o FlashAttention: faster attention compute (bandwidth reduction within
attention).

o PagedAttention: smarter KV memory management (capacity + schedul-
ing + fragmentation).

Interview pattern: propose both when context is long and concurrency is high.

4 System optimization: batching & scheduling

4.1 Continuous batching (in-flight batching)

Static batching waits for the batch to finish; continuous batching inserts new
requests as slots open.

o Boosts throughput (tokens/sec/GPU).
e Can improve p95/p99 by reducing head-of-line blocking if paired with
admission control.
flowchart TB
Q[Request queue] --> S[Scheduler]
subgraph GPU_Batch



A1[Req A activel
B1[Req B finishes] -->|evict| C1[Req C admitted]
Di1[Req D active]

end

S ==> C1

4.1.1 Admission control (why it matters)

Without admission control, you can over-admit, blow KV capacity, and destroy
tail latency.

Common policies: - cap active sequences by KV budget, - prioritize short requests
(SRPT-like heuristics), - preempt low-priority or very long decode tails.

4.2 Chunked prefill (solving the convoy effect)

A huge prompt (RAG with tens of thousands of tokens) can “freeze” the batch
if prefill is done atomically.

Chunked prefill: 1. Prefill chunk 1 for long request. 2. Decode steps for short
requests. 3. Prefill chunk 2, etc.

Benefit: smoother ITL and lower p99.

4.3 Prefix caching (prompt caching)

If many requests share a prefix (system prompt, policy text, long instructions),
caching KV for that prefix avoids recomputation.

Practical tips - Normalize prompts for cache hits (templating consistency).
- Split stable prefix vs volatile suffix. - Track prefix-cache hit ratio and saved
prefill tokens.

4.4 Speculative decoding (trade compute for bandwidth)

Decode is often memory-bound. Speculative decoding uses: - a small draft
model to propose (K) tokens, - a big target model to verify those tokens in
one pass.

Win condition: high acceptance rate and draft much cheaper than target.

flowchart LR
A[Prompt + KV] --> B[Draft proposes K tokens]
B --> C[Target verifies in 1 pass]

10



C -->|accept m<=K| D[Advance by m tokens]
C -->|reject| E[Fallback decode]

4.5 Test-time scaling (reliability without retraining)

Test-time scaling spends compute during inference to increase reliability,
without changing the model weights.

@ Tip

ELI5: Test-time scaling is like thinking twice: generate several attempts,
check them, and pick the best.

4.5.1 Common patterns to mention

e best-of-N + verifier,

« self-consistency voting,

e critique — revise loops,

o search (Tree-of-Thought, MCTS) with pruning.

Spending compute at inference to improve reliability.

1. Best-of-IN: sample N candidates, score with a verifier, take the best.

2. Sequential revision: draft — critique — fix.

3. Search: Tree-of-Thought / MCTS-style exploration (most useful for agents
and tool chains).

# Pseudocode: test-time scaling (best-of-N)
cands = model.generate(prompt, n=16, temp=0.7)
scores = verifier.score(prompt, cands)
best_response = cands[argmax(scores)]

@ Tip

Interview framing
Test-time scaling is an “inference lever” when retraining is expensive or
slow. The tradeoff is latency/cost.

4.6 Guided decoding and constrained generation

Constrained decoding enforces: - JSON schema correctness, - tool argument
validity, - grammar constraints.

Tradeoffs: - constraint checking overhead, - can reduce diversity (sometimes
desirable for tools).

11



5 Production patterns: disaggregated serving

5.1 Why disaggregate prefill and decode?
Prefill and decode want different “hardware personalities”:

o Prefill: compute-heavy (benefits from high tensor-core throughput).
o Decode: bandwidth + memory heavy (KV traffic; long tails).

Colocating both can create interference and tail-latency spikes.

5.2 Prefill/Decode (P/D) split

Pattern 1. Prefill fleet runs prompts, builds KV. 2. Transfer KV (and state)
over fast interconnect. 3. Decode fleet continues autoregressive generation.

flowchart LR
U[User request] --> P[Prefill workers]
P -—>|KV + state| X[Transfer]
X --> D[Decode workers]
D --> U2[Stream tokens]

Design questions to cover - KV transfer cost (bytes = KV size): when is it
worth it? - network fabric (NVLink / InfiniBand / TCP): what limits you? -
failure handling: retries, partial streams, idempotency - observability: TTFT
split across fleets, queueing per tier

5.3 Multi-LoRA serving (the “Bento” pattern)

Serving many fine-tuned variants (per customer, per feature, per locale) naively
requires one GPU (or replica set) per model. Multi-LoRA serving keeps a
single frozen base model resident and dynamically applies lightweight adapter
deltas per request.

5.3.1 Mental model

 Base weights: shared, always loaded

o Adapters (LoRA): small, swappable deltas (often <1-2% of base params)

o Scheduler: groups requests by (base, adapter) to batch efficiently
flowchart LR

R[Requests w/ adapter_id] --> S[Router/Scheduler]

S -->|batch by adapter| G1[GPU batch: adapter A]

S -->|batch by adapter| G2[GPU batch: adapter B]

12



Gl --> 0[Responses]
G2 -—> 0

5.3.2 Practical engineering points (interview-grade)

o Batching constraint: mixing many adapters in the same decode batch
can add overhead; most systems batch by adapter_ id.
e Caching: prefix caching can be per-(base, adapter) depending on imple-

mentation.

e Hot set vs cold set: keep popular adapters in GPU memory; page

less-used adapters (or load on demand).

o Isolation: ensure correct adapter routing to avoid “tenant bleed.”

# Pseudocode: adapter-—aware batching (conceptual)

while True:
reqs = dequeue_ready()

groups = groupby(reqs, key=lambda r: r.adapter_id)

for adapter_id, batch in groups.items():

activate_adapter (adapter_id) # swap/merge/apply LoRA

run_decode_or_prefill(batch)

@ Tip

cost-per-request.”

Interview one-liner: “Multi-LoRA turns N fine-tuned models into one
shared base 4+ N small deltas, maximizing GPU utilization and lowering

6 Compression: shrinking the model

6.1 Quantization

6.1.1 Taxonomy

Type Target What changes Best for

Weight-only Model size + store weights memory-bound

(INT8/INT4) bandwidth low-bit; decode,
dequantize for edge/CPU
compute

Activation quant ~ Compute matmuls in lower  compute-bound

(INT8/FP8) throughput precision prefill, large

KV cache quant Memory capacity K/V stored low
+ bandwidth precision

batches
long context, high
concurrency

13



6.1.2 The outlier problem (why naive quant fails)

LLMs have outlier channels / activation spikes. Naive quantization clips them
and can crater quality.

Mitigation strategies to mention: - outlier-aware weight quant (e.g., AWQ-style),
- activation smoothing (SmoothQuant-style), - selective higher precision for
outlier blocks.

Practical tips - Evaluate long-context retrieval and tool-call correctness after
quant. - Re-tune decoding params if distribution shifts. - Calibrate on production-
like prompts (length, language, tools).

6.2 Pruning and sparsity
6.2.1 Types

e Unstructured pruning: hard to accelerate without specialized kernels.

e Structured pruning: block/N:M sparsity can yield real speedups on
supported hardware.

e Architectural sparsity: MoE routing is “sparsity by design.”

Interview hooks - why structured sparsity is preferred for real latency wins, -
why pruning can introduce non-linear “quality cliffs.”

6.3 Knowledge distillation
6.3.1 Forms

« Response distillation: student learns teacher outputs (SFT on traces).

o Logit distillation: KL to teacher logits (needs teacher access).

e On-policy distillation: student samples, teacher guides (reduces distilla-
tion distribution mismatch).

6.3.2 When it wins

o cheaper model at similar behavior,
o stabilize post-RL policies,
e compress tool-use / reasoning traces into smaller students.

6.4 Low-rank factorization and adapters

e low-rank factorization of weights,
« adapter-based PEFT (LoRA/DoRA-style),
o multi-adapter serving and routing considerations.

14



7 Framework landscape

TODO: RL. vllm, sglang, triton server

7.1 Training framework (where the checkpoint comes from)

Topics to include: - FSDP/ZeRO tradeoffs, activation checkpointing - ten-
sor/pipeline parallelism, microbatching - mixed precision and numerics checks -
how training-time decisions affect inference (e.g., GQA/MQA, context length)

7.2 Inference framework (where tokens come from)

What to highlight in interviews: - KV paging + continuous batching support
- prefix caching + chunked prefill support - speculative decoding integration -
quantization support (weights and KV) - guided decoding support for tools

8 Evaluation & metrics

8.1 Core metrics

1. TTFT: time to first token (queue + prefill)

2. TPOT / ITL: time per output token / inter-token latency (decode
efficiency)

. Throughput: tokens/sec/GPU (utilization)

4. Cost: $/1M tokens (hardware + ops)

w

8.2 Quality regression

o Perplexity (PPL): good for sanity checks across quantization/caching
changes (within same tokenizer/eval setup).

¢ Needle-in-a-haystack variants: stress long-context retention (especially
after KV quantization).

e Tool-use correctness: JSON validity 4+ end-to-end tool success rate.

o Prompt continuation similarity: ROUGE-L / BLEU / BERTScore
(use cautiously).

9 Capstone: inference decision matrix
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Constraint Strategy Why

Latency sensitive (chat)  continuous batching + reduce TPOT while

speculative decoding keeping utilization
Throughput sensitive large batch + activation saturate compute,
(batch jobs) quant/FP8 amortize overhead
Long context GQA/MQA + paged  reduce KV footprint +
(RAG/docs) KV + chunked prefill + prevent OOM + reduce
KV quant head-of-line
Massive scale (>10k r/s) P/D disaggregation scale compute (prefill)
vs bandwidth (decode)
independently

10 Appendix: interview drills

10.1 Drill 1: batch size vs latency
Q: Why does increasing batch size improve throughput but hurt latency?

A (excellent): - Throughput improves because you amortize weight loads and
kernel launch overhead across more tokens/requests (higher arithmetic intensity).
- Latency can worsen because each request waits for larger batch prefill/step
completion, and queueing increases if you chase max utilization.

10.2 Drill 2: OOM on long prompts
Q: Your model is OOM’ing on long prompts. What do you do?

A (excellent): 1. Paged KV / block allocation to reduce fragmentation. 2. KV
quantization (FP16 — FP8 halves KV bytes). 3. Admission control (cap active
sequences by KV budget). 4. If a single request exceeds memory: tensor parallel
/ offload / disaggregation.

10.3 Drill 3: “why is decode slow?”

Q: Decode TPOT got worse after a change. What do you check?

A (excellent): - KV cache size and precision (did L or concurrency grow? did
KV quant disable?) - batching/scheduler (are we at small batch? poor packing?
preemption?) - kernel path (did attention kernel disable? did GQA/MQA
mismatch?) - sampling overhead (guided decoding constraints, tool validators)

10.4 Drill 4: GQA vs MHA (KV cache impact)

Q: How does Grouped-Query Attention (GQA) improve inference vs stan-
dard MHA?

16



A (excellent): - GQA reduces the number of KV heads (N_{kv}) relative to
query heads (N__q), so KV cache size scales down by roughly (N_q/N_{kv}). -
That cuts decode bandwidth (less KV to read per step) and increases max
concurrency before OOM. - It’s a “Goldilocks” tradeoff: smaller KV than MHA,
usually better quality than MQA.

17
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