
6. Inference & Compression
The Physics of Generation: From GQA to Disaggregated Serving

Table of contents
0.1 Overview . 2
0.2 Learning goals . 3

1 The physics of inference 3
1.1 Prefill vs decode (the “physics” of generation) 3

1.1.1 Phase 1: Prefill (the “reading” phase) 4
1.1.2 Phase 2: Decode (the “writing” phase) 4
1.1.3 Interview Q&A: TTFT vs ITL 5

1.2 Arithmetic intensity and the “compute vs bandwidth” trap . . . 6
1.2.1 TODO: remove equation due to rendering error 6
1.2.2 Why prefill tends to be compute-bound 6
1.2.3 Why decode tends to be memory-bound 6

2 Memory bottlenecks: KV cache 6
2.1 Attention architecture variants: MHA vs. MQA vs. GQA 6

2.1.1 KV cache scaling rule . 7
2.1.2 TODO: remove equation due to rendering error 7

2.2 What the KV cache is . 7
2.3 The math: estimating KV cache size 7

2.3.1 Worked example (generic, interview-style) 7
2.4 PagedAttention: the OS metaphor 8
2.5 KV cache quantization . 8

3 Kernel and attention optimizations 8
3.1 FlashAttention . 8
3.2 Kernel fusion and fused ops . 9
3.3 Page attention vs flash attention 9

4 System optimization: batching & scheduling 9
4.1 Continuous batching (in-flight batching) 9

4.1.1 Admission control (why it matters) 10
4.2 Chunked prefill (solving the convoy effect) 10

1

4.3 Prefix caching (prompt caching) 10
4.4 Speculative decoding (trade compute for bandwidth) 10
4.5 Test-time scaling (reliability without retraining) 11

4.5.1 Common patterns to mention 11
4.6 Guided decoding and constrained generation 11

5 Production patterns: disaggregated serving 12
5.1 Why disaggregate prefill and decode? 12
5.2 Prefill/Decode (P/D) split . 12
5.3 Multi-LoRA serving (the “Bento” pattern) 12

5.3.1 Mental model . 12
5.3.2 Practical engineering points (interview-grade) 13

6 Compression: shrinking the model 13
6.1 Quantization . 13

6.1.1 Taxonomy . 13
6.1.2 The outlier problem (why naive quant fails) 14

6.2 Pruning and sparsity . 14
6.2.1 Types . 14

6.3 Knowledge distillation . 14
6.3.1 Forms . 14
6.3.2 When it wins . 14

6.4 Low-rank factorization and adapters 14

7 Framework landscape 15
7.1 Training framework (where the checkpoint comes from) 15
7.2 Inference framework (where tokens come from) 15

8 Evaluation & metrics 15
8.1 Core metrics . 15
8.2 Quality regression . 15

9 Capstone: inference decision matrix 15

10 Appendix: interview drills 16
10.1 Drill 1: batch size vs latency . 16
10.2 Drill 2: OOM on long prompts 16
10.3 Drill 3: “why is decode slow?” . 16
10.4 Drill 4: GQA vs MHA (KV cache impact) 16

0.1 Overview
This chapter is a practical guide to efficient LLM inference and compression,
framed the way modern MLE interviews are framed: identify the bottleneck
(compute vs memory vs network), quantify it, then pick the right system + model
levers.

2

We’ll focus on:

• Inference physics: prefill vs decode (compute-bound vs memory-bound)
• KV cache: sizing, fragmentation, paging, quantization
• System levers: continuous batching, chunked prefill, prefix caching,

speculative decoding, guided decoding
• Serving architecture: P/D disaggregation, multi-tenancy, routing
• Compression: quantization, pruning/sparsity, distillation, low-

rank/adapters
• Evaluation: TTFT/TPOT/throughput + quality regression gates

INFO Note

If you only remember one thing: Prefill scales like GEMM (compute-
bound). Decode scales like KV + weight traffic (memory-bound).

0.2 Learning goals
By the end of this chapter, you should be able to:

• Analyze the physics: explain why prefill is typically compute-bound
and decode is typically memory-/bandwidth-bound.

• Calculate capacity: estimate KV cache requirements under MHA
vs. MQA vs. GQA (and how that changes max concurrency).

• Design the stack: choose engines (e.g., vLLM vs. TRT-LLM) and
scheduling strategies (continuous batching, chunked prefill, prefix caching).

• Optimize kernels: explain how FlashAttention and kernel fusion
reduce HBM traffic and launch overhead.

• Apply compression: select the right quantization strategy (weight-only
vs. activation vs. KV) and predict TTFT/TPOT impacts.

• Architect for scale: design disaggregated serving and multi-LoRA
systems for cost efficiency.

ight-only vs. activation vs. KV) and predict TTFT/TPOT impacts. - Architect
for scale: design disaggregated serving and multi-LoRA systems for cost
efficiency.

1 The physics of inference
1.1 Prefill vs decode (the “physics” of generation)
To understand LLM performance, internalize that “generating text” is actually
two different workloads executed in sequence.

3

1.1.1 Phase 1: Prefill (the “reading” phase)

Also known as: prompt processing, initialization.

What happens: the model processes the full prompt (length (L_{
ext{prompt}})) in parallel, producing hidden states and building the initial KV
cache.

• Operation: large matrix–matrix multiplies (GEMM) across many
prompt tokens.

• Compute: high. Attention has a quadratic term in prompt length (roughly
(O(L_{ ext{prompt}}^2)) for full attention), and MLP/linear layers are
heavy GEMMs.

• Memory access: relatively efficient weight reuse: weights are loaded and
reused across many tokens in the prompt (and across batch).

Arithmetic intensity: typically high → compute-bound.

Key latency metric: TTFT (time to first token), dominated by queueing +
prefill.

1.1.2 Phase 2: Decode (the “writing” phase)

Also known as: autoregressive token generation.

What happens: the model generates output tokens sequentially. At step (t), it
consumes the latest token and previously cached KV to produce the next token.

• Operation: effectively matrix–vector (GEMV) or small-GEMM at low
batch sizes, plus KV cache reads.

• Compute: much smaller per step than prefill (you’re processing ~1 token
per sequence).

• Memory access: heavy. Each decode step must read:
– substantial portions of the model weights (dominant at small batch;

mitigated at higher batch via reuse), and
– the growing KV history for attention for each active sequence.

Arithmetic intensity: typically low → memory-bandwidth / scheduling
bound.

Key latency metric: TPOT/ITL (time per output token / inter-token la-
tency), dominated by decode efficiency (KV traffic + kernel/scheduler overhead).
gantt

title Lifecycle of a request (conceptual)
dateFormat s
axisFormat %s

section Request A
Prefill (compute-bound) :active, p1, 0, 2s
Decode t=1 (memory-bound) :d1, after p1, 0.5s

4

Decode t=2 :d2, after d1, 0.5s
Decode t=3 :d3, after d2, 0.5s

section Request B
Wait in queue :crit, 0, 1s
Prefill :p2, after p1, 1s
Decode t=1 :d4, after p2, 0.5s

INFO The roofline implication (why this dichotomy matters)

Feature Prefill Decode
Limiting factor Compute (FLOPs) Memory bandwidth

(GB/s) + KV
capacity

Typical hardware
signature

Hot tensor cores Tensor cores waiting
on memory / scheduler

Key metric TTFT TPOT / ITL
Batching effect More batch → more

compute
More batch can be
“cheap” until compute
catches up to
bandwidth

Common
optimizations

FlashAttention, tensor
parallel,
compilation/fusions

Paged KV, KV/weight
quantization,
speculative decoding,
scheduling

Decode batching intuition: when decode is bandwidth-bound, you can
often increase the number of active sequences with only a modest TPOT
penalty—until compute becomes dominant.

1.1.3 Interview Q&A: TTFT vs ITL

• If TTFT is too high: prefill is slow → add compute (faster GPU),
improve kernels (FlashAttention), reduce prompt length, enable
prefix caching, or shard (TP) for very large models.

• If ITL/TPOT is too high: decode is slow → reduce data moved
(weight/KV quantization), improve KV management (paged KV),
use speculative decoding, and fix scheduling/continuous batching.

5

1.2 Arithmetic intensity and the “compute vs bandwidth”
trap

A back-of-the-envelope way to reason about bottlenecks is arithmetic intensity:

1.2.1 TODO: remove equation due to rendering error

• High (I) → compute-bound (tensor cores busy)
• Low (I) → memory-bound (cores waiting for HBM)

1.2.2 Why prefill tends to be compute-bound

In prefill, weights get reused across many prompt tokens in a batch, boosting (I).

1.2.3 Why decode tends to be memory-bound

In decode, at small batch sizes you do relatively little compute per token but
still must read: - weights (unless cached effectively at higher batch), - and a
growing KV cache for attention.

INFO Note

A common real-world symptom: high GPU “utilization” reported, but low
tensor core utilization (the GPU is busy waiting on memory or launching
kernels).

2 Memory bottlenecks: KV cache
2.1 Attention architecture variants: MHA vs. MQA

vs. GQA
You can’t reason about KV cache cost without knowing how many KV heads
your model has.

• MHA (Multi-Head Attention): (N_{kv-heads} = N_{q-heads}).
Highest KV memory/bandwidth.

• MQA (Multi-Query Attention): (N_{kv-heads} = 1). Smallest KV
cache, but can reduce quality for some tasks.

• GQA (Grouped-Query Attention): (1 < N_{kv-heads} <
N_{q-heads}). Common “Goldilocks” choice (used in many modern
models).

6

2.1.1 KV cache scaling rule

Holding everything else fixed, KV cache size (and decode KV bandwidth) scales
linearly with (N_{kv-heads}). Therefore:

2.1.2 TODO: remove equation due to rendering error

Example: if (N_{q-heads}=64) and (N_{kv-heads}=8), then KV cache is
about (64/8 = 8×) smaller than MHA.

LIGHTBULB Tip

Interview move: If TPOT improves after switching to GQA, say: less
KV read per step → less bandwidth pressure → higher concur-
rency at the same latency.

2.2 What the KV cache is
For attention at time (t), the model needs keys/values for all prior tokens
(1..t). Recomputing is too slow, so we cache K/V per layer.

2.3 The math: estimating KV cache size
A standard interview back-of-the-envelope question:

[KV bytes per token ;�; 2 ×N_{layers} ×N_{kv-heads} ×D_{head}
×P_{bytes}]

Total KV footprint for a sequence length (L) and concurrency (B):

[KV bytes total ;�; B ×L ×KV bytes per token]

Where: - the 2 is for K and V, - (N_{kv-heads}) is KV heads (important:
with GQA/MQA this can be much smaller than attention heads), - (P_{bytes})
is bytes per element (e.g., 2 for FP16/BF16; 1 for FP8/INT8).

LIGHTBULB Tip

Don’t forget GQA: KV cache size depends on KV heads, not attention
heads.

2.3.1 Worked example (generic, interview-style)

Assume: - (N_{layers}=80), - (N_{kv-heads}=8), - (D_{head}=128), - FP16
→ (P_{bytes}=2).

KV bytes/token:

[2 ×80 ×8 ×128 ×2 = 327{,}680;bytes �0.31;MB/token]

7

At (L=8{,}192), KV per sequence (�2.5) GB.

Implication: long context + high concurrency is primarily a memory capacity
problem.

2.4 PagedAttention: the OS metaphor
Naively allocating a contiguous KV tensor for max length wastes memory
(fragmentation). PagedAttention treats KV like virtual memory:

1. Divide KV into fixed-size blocks (e.g., 16 tokens per block).
2. Allocate blocks on demand.
3. Keep a “page table” mapping sequence positions to blocks.

flowchart LR
A[Sequence tokens] --> B[KV pages: blocks of 16 tokens]
B --> C[Non-contiguous allocation]
C --> D[Lower fragmentation → higher concurrency]

Why it matters - Near-zero fragmentation increases effective capacity. -
Enables preemption and continuous batching.

2.5 KV cache quantization
KV cache can be quantized (FP16 → FP8/INT8/INT4) to: - increase max
concurrency, - reduce memory bandwidth in decode.

Tradeoff: quality regressions often show up in: - long-context retrieval, - “needle
in haystack” style tasks, - tool-use correctness when evidence is mid-context.

3 Kernel and attention optimizations
3.1 FlashAttention
FlashAttention improves attention speed by reducing HBM traffic and fusing op-
erations. Use it when attention becomes dominant (long context, high throughput
settings).

Practical tips - Validate kernel compatibility: MHA/GQA/MQA, RoPE, sliding
window. - Re-check numerics when changing precision (BF16/FP16/FP8).

8

3.2 Kernel fusion and fused ops
Even when an operation is “small,” launching many GPU kernels can be expensive
(CPU�GPU coordination, scheduling, synchronization). Kernel fusion combines
multiple steps into fewer launches to reduce overhead and keep data on-chip
longer.

Common fusions around attention blocks:

• scale + mask + softmax (+ dropout)
• bias + activation + residual
• fused layernorm, fused rotary embeddings (implementation-dependent)

Why it matters - Prefill: improves throughput by reducing launch overhead
and memory traffic. - Decode: reduces per-token overhead where kernels are
tiny and launch costs dominate.

INFO Note

Kernel fusion complements FlashAttention: FlashAttention reduces
HBM traffic inside attention; fusion reduces overhead around it.

3.3 Page attention vs flash attention
They solve different problems:

• FlashAttention: faster attention compute (bandwidth reduction within
attention).

• PagedAttention: smarter KV memory management (capacity + schedul-
ing + fragmentation).

Interview pattern: propose both when context is long and concurrency is high.

4 System optimization: batching & scheduling
4.1 Continuous batching (in-flight batching)
Static batching waits for the batch to finish; continuous batching inserts new
requests as slots open.

• Boosts throughput (tokens/sec/GPU).
• Can improve p95/p99 by reducing head-of-line blocking if paired with

admission control.
flowchart TB

Q[Request queue] --> S[Scheduler]
subgraph GPU_Batch

9

A1[Req A active]
B1[Req B finishes] -->|evict| C1[Req C admitted]
D1[Req D active]

end
S --> C1

4.1.1 Admission control (why it matters)

Without admission control, you can over-admit, blow KV capacity, and destroy
tail latency.

Common policies: - cap active sequences by KV budget, - prioritize short requests
(SRPT-like heuristics), - preempt low-priority or very long decode tails.

4.2 Chunked prefill (solving the convoy effect)
A huge prompt (RAG with tens of thousands of tokens) can “freeze” the batch
if prefill is done atomically.

Chunked prefill: 1. Prefill chunk 1 for long request. 2. Decode steps for short
requests. 3. Prefill chunk 2, etc.

Benefit: smoother ITL and lower p99.

4.3 Prefix caching (prompt caching)
If many requests share a prefix (system prompt, policy text, long instructions),
caching KV for that prefix avoids recomputation.

Practical tips - Normalize prompts for cache hits (templating consistency).
- Split stable prefix vs volatile suffix. - Track prefix-cache hit ratio and saved
prefill tokens.

4.4 Speculative decoding (trade compute for bandwidth)
Decode is often memory-bound. Speculative decoding uses: - a small draft
model to propose (K) tokens, - a big target model to verify those tokens in
one pass.

Win condition: high acceptance rate and draft much cheaper than target.
flowchart LR

A[Prompt + KV] --> B[Draft proposes K tokens]
B --> C[Target verifies in 1 pass]

10

C -->|accept m<=K| D[Advance by m tokens]
C -->|reject| E[Fallback decode]

4.5 Test-time scaling (reliability without retraining)
Test-time scaling spends compute during inference to increase reliability,
without changing the model weights.

LIGHTBULB Tip

ELI5: Test-time scaling is like thinking twice: generate several attempts,
check them, and pick the best.

4.5.1 Common patterns to mention

• best-of-N + verifier,
• self-consistency voting,
• critique → revise loops,
• search (Tree-of-Thought, MCTS) with pruning.

Spending compute at inference to improve reliability.

1. Best-of-N: sample N candidates, score with a verifier, take the best.
2. Sequential revision: draft → critique → fix.
3. Search: Tree-of-Thought / MCTS-style exploration (most useful for agents

and tool chains).
Pseudocode: test-time scaling (best-of-N)
cands = model.generate(prompt, n=16, temp=0.7)
scores = verifier.score(prompt, cands)
best_response = cands[argmax(scores)]

LIGHTBULB Tip

Interview framing
Test-time scaling is an “inference lever” when retraining is expensive or
slow. The tradeoff is latency/cost.

4.6 Guided decoding and constrained generation
Constrained decoding enforces: - JSON schema correctness, - tool argument
validity, - grammar constraints.

Tradeoffs: - constraint checking overhead, - can reduce diversity (sometimes
desirable for tools).

11

5 Production patterns: disaggregated serving
5.1 Why disaggregate prefill and decode?
Prefill and decode want different “hardware personalities”:

• Prefill: compute-heavy (benefits from high tensor-core throughput).
• Decode: bandwidth + memory heavy (KV traffic; long tails).

Colocating both can create interference and tail-latency spikes.

5.2 Prefill/Decode (P/D) split
Pattern 1. Prefill fleet runs prompts, builds KV. 2. Transfer KV (and state)
over fast interconnect. 3. Decode fleet continues autoregressive generation.
flowchart LR

U[User request] --> P[Prefill workers]
P -->|KV + state| X[Transfer]
X --> D[Decode workers]
D --> U2[Stream tokens]

Design questions to cover - KV transfer cost (bytes = KV size): when is it
worth it? - network fabric (NVLink / InfiniBand / TCP): what limits you? -
failure handling: retries, partial streams, idempotency - observability: TTFT
split across fleets, queueing per tier

5.3 Multi-LoRA serving (the “Bento” pattern)
Serving many fine-tuned variants (per customer, per feature, per locale) naively
requires one GPU (or replica set) per model. Multi-LoRA serving keeps a
single frozen base model resident and dynamically applies lightweight adapter
deltas per request.

5.3.1 Mental model

• Base weights: shared, always loaded
• Adapters (LoRA): small, swappable deltas (often <1–2% of base params)
• Scheduler: groups requests by (base, adapter) to batch efficiently

flowchart LR
R[Requests w/ adapter_id] --> S[Router/Scheduler]
S -->|batch by adapter| G1[GPU batch: adapter A]
S -->|batch by adapter| G2[GPU batch: adapter B]

12

G1 --> O[Responses]
G2 --> O

5.3.2 Practical engineering points (interview-grade)

• Batching constraint: mixing many adapters in the same decode batch
can add overhead; most systems batch by adapter_id.

• Caching: prefix caching can be per-(base, adapter) depending on imple-
mentation.

• Hot set vs cold set: keep popular adapters in GPU memory; page
less-used adapters (or load on demand).

• Isolation: ensure correct adapter routing to avoid “tenant bleed.”
Pseudocode: adapter-aware batching (conceptual)
while True:

reqs = dequeue_ready()
groups = groupby(reqs, key=lambda r: r.adapter_id)
for adapter_id, batch in groups.items():

activate_adapter(adapter_id) # swap/merge/apply LoRA
run_decode_or_prefill(batch)

LIGHTBULB Tip

Interview one-liner: “Multi-LoRA turns N fine-tuned models into one
shared base + N small deltas, maximizing GPU utilization and lowering
cost-per-request.”

6 Compression: shrinking the model
6.1 Quantization
6.1.1 Taxonomy

Type Target What changes Best for
Weight-only
(INT8/INT4)

Model size +
bandwidth

store weights
low-bit;
dequantize for
compute

memory-bound
decode,
edge/CPU

Activation quant
(INT8/FP8)

Compute
throughput

matmuls in lower
precision

compute-bound
prefill, large
batches

KV cache quant Memory capacity
+ bandwidth

K/V stored low
precision

long context, high
concurrency

13

6.1.2 The outlier problem (why naive quant fails)

LLMs have outlier channels / activation spikes. Naive quantization clips them
and can crater quality.

Mitigation strategies to mention: - outlier-aware weight quant (e.g., AWQ-style),
- activation smoothing (SmoothQuant-style), - selective higher precision for
outlier blocks.

Practical tips - Evaluate long-context retrieval and tool-call correctness after
quant. - Re-tune decoding params if distribution shifts. - Calibrate on production-
like prompts (length, language, tools).

6.2 Pruning and sparsity
6.2.1 Types

• Unstructured pruning: hard to accelerate without specialized kernels.
• Structured pruning: block/N:M sparsity can yield real speedups on

supported hardware.
• Architectural sparsity: MoE routing is “sparsity by design.”

Interview hooks - why structured sparsity is preferred for real latency wins, -
why pruning can introduce non-linear “quality cliffs.”

6.3 Knowledge distillation
6.3.1 Forms

• Response distillation: student learns teacher outputs (SFT on traces).
• Logit distillation: KL to teacher logits (needs teacher access).
• On-policy distillation: student samples, teacher guides (reduces distilla-

tion distribution mismatch).

6.3.2 When it wins

• cheaper model at similar behavior,
• stabilize post-RL policies,
• compress tool-use / reasoning traces into smaller students.

6.4 Low-rank factorization and adapters
• low-rank factorization of weights,
• adapter-based PEFT (LoRA/DoRA-style),
• multi-adapter serving and routing considerations.

14

7 Framework landscape
TODO: RL. vllm, sglang, triton server

7.1 Training framework (where the checkpoint comes from)
Topics to include: - FSDP/ZeRO tradeoffs, activation checkpointing - ten-
sor/pipeline parallelism, microbatching - mixed precision and numerics checks -
how training-time decisions affect inference (e.g., GQA/MQA, context length)

7.2 Inference framework (where tokens come from)
What to highlight in interviews: - KV paging + continuous batching support
- prefix caching + chunked prefill support - speculative decoding integration -
quantization support (weights and KV) - guided decoding support for tools

8 Evaluation & metrics
8.1 Core metrics

1. TTFT: time to first token (queue + prefill)
2. TPOT / ITL: time per output token / inter-token latency (decode

efficiency)
3. Throughput: tokens/sec/GPU (utilization)
4. Cost: $/1M tokens (hardware + ops)

8.2 Quality regression
• Perplexity (PPL): good for sanity checks across quantization/caching

changes (within same tokenizer/eval setup).
• Needle-in-a-haystack variants: stress long-context retention (especially

after KV quantization).
• Tool-use correctness: JSON validity + end-to-end tool success rate.
• Prompt continuation similarity: ROUGE-L / BLEU / BERTScore

(use cautiously).

9 Capstone: inference decision matrix

15

Constraint Strategy Why
Latency sensitive (chat) continuous batching +

speculative decoding
reduce TPOT while
keeping utilization

Throughput sensitive
(batch jobs)

large batch + activation
quant/FP8

saturate compute,
amortize overhead

Long context
(RAG/docs)

GQA/MQA + paged
KV + chunked prefill +
KV quant

reduce KV footprint +
prevent OOM + reduce
head-of-line

Massive scale (>10k r/s) P/D disaggregation scale compute (prefill)
vs bandwidth (decode)
independently

10 Appendix: interview drills
10.1 Drill 1: batch size vs latency
Q: Why does increasing batch size improve throughput but hurt latency?

A (excellent): - Throughput improves because you amortize weight loads and
kernel launch overhead across more tokens/requests (higher arithmetic intensity).
- Latency can worsen because each request waits for larger batch prefill/step
completion, and queueing increases if you chase max utilization.

10.2 Drill 2: OOM on long prompts
Q: Your model is OOM’ing on long prompts. What do you do?

A (excellent): 1. Paged KV / block allocation to reduce fragmentation. 2. KV
quantization (FP16 → FP8 halves KV bytes). 3. Admission control (cap active
sequences by KV budget). 4. If a single request exceeds memory: tensor parallel
/ offload / disaggregation.

10.3 Drill 3: “why is decode slow?”
Q: Decode TPOT got worse after a change. What do you check?

A (excellent): - KV cache size and precision (did L or concurrency grow? did
KV quant disable?) - batching/scheduler (are we at small batch? poor packing?
preemption?) - kernel path (did attention kernel disable? did GQA/MQA
mismatch?) - sampling overhead (guided decoding constraints, tool validators)

10.4 Drill 4: GQA vs MHA (KV cache impact)
Q: How does Grouped-Query Attention (GQA) improve inference vs stan-
dard MHA?

16

A (excellent): - GQA reduces the number of KV heads (N_{kv}) relative to
query heads (N_q), so KV cache size scales down by roughly (N_q/N_{kv}). -
That cuts decode bandwidth (less KV to read per step) and increases max
concurrency before OOM. - It’s a “Goldilocks” tradeoff: smaller KV than MHA,
usually better quality than MQA.

17

	Overview
	Learning goals
	The physics of inference
	Prefill vs decode (the ``physics'' of generation)
	Phase 1: Prefill (the ``reading'' phase)
	Phase 2: Decode (the ``writing'' phase)
	Interview Q&A: TTFT vs ITL

	Arithmetic intensity and the ``compute vs bandwidth'' trap
	TODO: remove equation due to rendering error
	Why prefill tends to be compute-bound
	Why decode tends to be memory-bound

	Memory bottlenecks: KV cache
	Attention architecture variants: MHA vs. MQA vs. GQA
	KV cache scaling rule
	TODO: remove equation due to rendering error

	What the KV cache is
	The math: estimating KV cache size
	Worked example (generic, interview-style)

	PagedAttention: the OS metaphor
	KV cache quantization

	Kernel and attention optimizations
	FlashAttention
	Kernel fusion and fused ops
	Page attention vs flash attention

	System optimization: batching & scheduling
	Continuous batching (in-flight batching)
	Admission control (why it matters)

	Chunked prefill (solving the convoy effect)
	Prefix caching (prompt caching)
	Speculative decoding (trade compute for bandwidth)
	Test-time scaling (reliability without retraining)
	Common patterns to mention

	Guided decoding and constrained generation

	Production patterns: disaggregated serving
	Why disaggregate prefill and decode?
	Prefill/Decode (P/D) split
	Multi-LoRA serving (the ``Bento'' pattern)
	Mental model
	Practical engineering points (interview-grade)

	Compression: shrinking the model
	Quantization
	Taxonomy
	The outlier problem (why naive quant fails)

	Pruning and sparsity
	Types

	Knowledge distillation
	Forms
	When it wins

	Low-rank factorization and adapters

	Framework landscape
	Training framework (where the checkpoint comes from)
	Inference framework (where tokens come from)

	Evaluation & metrics
	Core metrics
	Quality regression

	Capstone: inference decision matrix
	Appendix: interview drills
	Drill 1: batch size vs latency
	Drill 2: OOM on long prompts
	Drill 3: ``why is decode slow?''
	Drill 4: GQA vs MHA (KV cache impact)

